Home
Class 12
MATHS
The value of sin[cot^(-1){cos(tan^(-1) x...

The value of `sin[cot^(-1){cos(tan^(-1) x)}]` is

A

`sqrt(x^(2)+2)/(sqrt(x^(2)+1)`

B

`sqrt(x^(2)+1)/(sqrt(x^(2)+2)`

C

`(x)/sqrt(x^(2)+2)`

D

`(1)/sqrt(x^(2)+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sin\left(\cot^{-1}\left(\cos\left(\tan^{-1} x\right)\right)\right) \), we will follow these steps: ### Step 1: Define the angle Let \( \theta = \tan^{-1}(x) \). This means that \( \tan(\theta) = x \). ### Step 2: Construct a right triangle From the definition of tangent, we can create a right triangle where: - The opposite side (perpendicular) is \( x \) - The adjacent side (base) is \( 1 \) Using the Pythagorean theorem, the hypotenuse \( h \) can be calculated as: \[ h = \sqrt{x^2 + 1} \] ### Step 3: Find \( \cos(\theta) \) Now, we can find \( \cos(\theta) \): \[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 4: Substitute into the cotangent function Next, we need to find \( \cot^{-1}(\cos(\theta)) \): \[ \cot^{-1}\left(\cos(\theta)\right) = \cot^{-1}\left(\frac{1}{\sqrt{x^2 + 1}}\right) \] Let \( \phi = \cot^{-1}\left(\frac{1}{\sqrt{x^2 + 1}}\right) \). This means: \[ \cot(\phi) = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 5: Construct another right triangle for \( \phi \) From \( \cot(\phi) \), we can create another right triangle where: - The adjacent side is \( 1 \) - The opposite side is \( \sqrt{x^2 + 1} \) Using the Pythagorean theorem again, the hypotenuse \( h' \) can be calculated as: \[ h' = \sqrt{1^2 + \left(\sqrt{x^2 + 1}\right)^2} = \sqrt{1 + (x^2 + 1)} = \sqrt{x^2 + 2} \] ### Step 6: Find \( \sin(\phi) \) Now, we can find \( \sin(\phi) \): \[ \sin(\phi) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 2}} \] ### Step 7: Conclusion Thus, the value of \( \sin\left(\cot^{-1}\left(\cos\left(\tan^{-1} x\right)\right)\right) \) is: \[ \sin\left(\cot^{-1}\left(\cos\left(\tan^{-1} x\right)\right)\right) = \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 2}} \] ### Final Answer \[ \frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 2}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of cot [sin^(-1){cos(tan^(-1)1)}] is

If A=sin[cot^(-1){cos(tan^(-1)x)}], then

Evalute sin{cot^(-1)(cos(tan^(-1)1))}

The value of sin cot^(-1)tan cos^(-1)x is equal to:

The value of sin{cot^(-1)[cos(cot^(-1)((1)/(x)))]} is equal to (x gt0)

sin[cot^(-1) {tan(cos^(-1)x)}] is equal to

Find the value of the expression sin[cot^(-1){cos(tan^(1)1)}]

sin {cot^(-1)[tan (cos^(-1)x)]=

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  2. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  3. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  4. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-...

    Text Solution

    |

  5. If A=tan^-1((xsqrt3)/(2k-x)) and B=tan^-1((2x-k)/(ksqrt3)) then find t...

    Text Solution

    |

  6. If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x then x equals

    Text Solution

    |

  7. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  8. If -1/2 le x le 1/2 hence sin^(-1)(3x-4x^(3)) equals

    Text Solution

    |

  9. The value of sin^(-1)(sin 10) is

    Text Solution

    |

  10. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

    Text Solution

    |

  11. The value of sin^(-1)[cos((33pi)/5)] is

    Text Solution

    |

  12. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |

  13. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  14. If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(...

    Text Solution

    |

  15. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  16. If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

    Text Solution

    |

  17. If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

    Text Solution

    |

  18. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  19. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  20. If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

    Text Solution

    |