Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x th...

If `sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x ` then x equals

A

1,-1

B

1,0

C

`0,1/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^{-1} x + \sin^{-1} (1 - x) = \cos^{-1} x \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \sin^{-1} x + \sin^{-1} (1 - x) = \cos^{-1} x \] ### Step 2: Use the identity for sine and cosine We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Using this identity, we can rewrite the left-hand side: \[ \sin^{-1} x + \sin^{-1} (1 - x) = \frac{\pi}{2} - \sin^{-1} (1 - x) \] Thus, we can rewrite the equation as: \[ \frac{\pi}{2} - \sin^{-1} (1 - x) = \cos^{-1} x \] ### Step 3: Rearranging the equation Rearranging gives us: \[ \sin^{-1} (1 - x) = \frac{\pi}{2} - \cos^{-1} x \] Using the identity again, we can simplify this to: \[ \sin^{-1} (1 - x) = \sin^{-1} x \] ### Step 4: Equate the arguments of sine Since the sine function is one-to-one in the range of \([-1, 1]\), we can equate the arguments: \[ 1 - x = x \] ### Step 5: Solve for \(x\) Solving the equation \(1 - x = x\): \[ 1 = 2x \implies x = \frac{1}{2} \] ### Step 6: Check for other solutions We also need to check if there are any other solutions. Since both \( \sin^{-1} x \) and \( \sin^{-1} (1 - x) \) are defined for \( x \in [0, 1] \), we can check the endpoints: - If \( x = 0 \): \[ \sin^{-1}(0) + \sin^{-1}(1) = 0 + \frac{\pi}{2} = \frac{\pi}{2} \quad \text{and} \quad \cos^{-1}(0) = \frac{\pi}{2} \] This holds true. - If \( x = 1 \): \[ \sin^{-1}(1) + \sin^{-1}(0) = \frac{\pi}{2} + 0 = \frac{\pi}{2} \quad \text{and} \quad \cos^{-1}(1) = 0 \] This does not hold. ### Conclusion The solutions to the equation are: \[ x = 0 \quad \text{and} \quad x = \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x , then x belongs to

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If sin(sin^(-1)1/5+cos^(-1)x) =1 then x is equal to

If: sin(sin^(-1)(1/5) + cos^(-1)x)=1 , then: x=

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-...

    Text Solution

    |

  2. If A=tan^-1((xsqrt3)/(2k-x)) and B=tan^-1((2x-k)/(ksqrt3)) then find t...

    Text Solution

    |

  3. If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x then x equals

    Text Solution

    |

  4. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  5. If -1/2 le x le 1/2 hence sin^(-1)(3x-4x^(3)) equals

    Text Solution

    |

  6. The value of sin^(-1)(sin 10) is

    Text Solution

    |

  7. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

    Text Solution

    |

  8. The value of sin^(-1)[cos((33pi)/5)] is

    Text Solution

    |

  9. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |

  10. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  11. If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(...

    Text Solution

    |

  12. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  13. If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

    Text Solution

    |

  14. If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

    Text Solution

    |

  15. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  16. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  17. If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

    Text Solution

    |

  18. If 1/2 le x le 1 then sin^(-1)3x-4x^(3) equals

    Text Solution

    |

  19. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  20. If 1/2 le x le 1 then cos^(-1)(4x^(3)-3x) equals

    Text Solution

    |