Home
Class 12
MATHS
If -1 le x le 0 then cos^(-1)(2x^(2)-1) ...

If `-1 le x le 0` then `cos^(-1)(2x^(2)-1)` equals

A

`2 cos^(-1)x`

B

`pi-2 cos^(-1)x`

C

`2pi-2 cos^(-1)x`

D

`-2 cos^(-1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos^{-1}(2x^2 - 1) \) for \( -1 \leq x \leq 0 \). ### Step-by-Step Solution: 1. **Identify the expression**: We start with the expression \( \cos^{-1}(2x^2 - 1) \). 2. **Use the double angle formula**: We recall the trigonometric identity: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] From this, we can see that if we let \( \theta = \cos^{-1}(x) \), then: \[ 2\cos^2(\theta) - 1 = \cos(2\theta) \] This implies: \[ \cos^{-1}(2x^2 - 1) = 2\cos^{-1}(x) \quad \text{if } x \in [0, 1] \] 3. **Determine the correct case**: Since \( x \) is in the range \( -1 \leq x \leq 0 \), we need to use the alternative case of the formula: \[ \cos^{-1}(2x^2 - 1) = 2\pi - 2\cos^{-1}(x) \] 4. **Rearranging the equation**: We can express this as: \[ \cos^{-1}(2x^2 - 1) = 2\pi - 2\cos^{-1}(x) \] 5. **Final expression**: Thus, the value of \( \cos^{-1}(2x^2 - 1) \) for \( -1 \leq x \leq 0 \) is: \[ \cos^{-1}(2x^2 - 1) = 2\pi - 2\cos^{-1}(x) \] ### Conclusion: The final answer is: \[ \cos^{-1}(2x^2 - 1) = 2\pi - 2\cos^{-1}(x) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

if -1 le x le -1/2 then cos^(-1)(4x^(3)-3x) equals

if -1/2 le x le 1/2 then cos^(-1)(4x^(3)-3x) equals

If 1/2 le x le 1 then cos^(-1)(4x^(3)-3x) equals

If 1/2 le x le 1 then sin^(-1) (3x-4x^(3)) equals

If -1 le x le -1/2 , then sin^(-1)(3x-4x^3) equals

If -1/2 le x le 1/2 hence sin^(-1)(3x-4x^(3)) equals

If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

If 1/2 le x le 1 then sin^(-1)3x-4x^(3) equals