Home
Class 12
MATHS
If a le 1/32 then the number of solution...

If `a le 1/32` then the number of solution of
`(sin^(-1) x)^(3) +(cos^(-1) x)^(3) = a pi^(3)` is

A

0

B

1

C

2

D

infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin^{-1} x)^3 + (\cos^{-1} x)^3 = a \pi^3\) given that \(a \leq \frac{1}{32}\), we will follow these steps: ### Step 1: Use the identity for the sum of cubes We know that \(A^3 + B^3 = (A + B)(A^2 - AB + B^2)\). Here, let \(A = \sin^{-1} x\) and \(B = \cos^{-1} x\). ### Step 2: Apply the identity Using the identity, we have: \[ (\sin^{-1} x)^3 + (\cos^{-1} x)^3 = (\sin^{-1} x + \cos^{-1} x)((\sin^{-1} x)^2 - \sin^{-1} x \cos^{-1} x + (\cos^{-1} x)^2) \] Since \(\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}\), we can substitute this into our equation: \[ = \frac{\pi}{2} \left((\sin^{-1} x)^2 + (\cos^{-1} x)^2 - \sin^{-1} x \cos^{-1} x\right) \] ### Step 3: Simplify the expression Now, we know: \[ (\sin^{-1} x)^2 + (\cos^{-1} x)^2 = \left(\frac{\pi}{2}\right)^2 - 2 \sin^{-1} x \cos^{-1} x \] Thus, we can rewrite: \[ (\sin^{-1} x)^3 + (\cos^{-1} x)^3 = \frac{\pi}{2} \left(\frac{\pi^2}{4} - 2 \sin^{-1} x \cos^{-1} x - \sin^{-1} x \cos^{-1} x\right) \] This simplifies to: \[ = \frac{\pi}{2} \left(\frac{\pi^2}{4} - 3 \sin^{-1} x \cos^{-1} x\right) \] ### Step 4: Set the equation equal to \(a \pi^3\) We set this equal to \(a \pi^3\): \[ \frac{\pi}{2} \left(\frac{\pi^2}{4} - 3 \sin^{-1} x \cos^{-1} x\right) = a \pi^3 \] ### Step 5: Simplify the equation Dividing both sides by \(\pi\) (assuming \(\pi \neq 0\)): \[ \frac{1}{2} \left(\frac{\pi^2}{4} - 3 \sin^{-1} x \cos^{-1} x\right) = a \pi^2 \] Multiplying both sides by 2 gives: \[ \frac{\pi^2}{4} - 3 \sin^{-1} x \cos^{-1} x = 2a \pi^2 \] Rearranging gives: \[ 3 \sin^{-1} x \cos^{-1} x = \frac{\pi^2}{4} - 2a \pi^2 \] ### Step 6: Solve for \(\sin^{-1} x \cos^{-1} x\) This can be rewritten as: \[ \sin^{-1} x \cos^{-1} x = \frac{\pi^2}{12} - \frac{2}{3} a \pi^2 \] ### Step 7: Analyze the range of \(\sin^{-1} x \cos^{-1} x\) The maximum value of \(\sin^{-1} x \cos^{-1} x\) occurs at \(x = \frac{1}{\sqrt{2}}\): \[ \sin^{-1} \left(\frac{1}{\sqrt{2}}\right) = \cos^{-1} \left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4} \] Thus, the maximum value is: \[ \frac{\pi}{4} \cdot \frac{\pi}{4} = \frac{\pi^2}{16} \] ### Step 8: Set the inequality We need: \[ \frac{\pi^2}{12} - \frac{2}{3} a \pi^2 \leq \frac{\pi^2}{16} \] This simplifies to: \[ \frac{1}{12} - \frac{2}{3} a \leq \frac{1}{16} \] ### Step 9: Solve for \(a\) Multiplying through by 48 (the least common multiple of 12 and 16): \[ 4 - 32a \leq 3 \] This leads to: \[ 1 \leq 32a \quad \Rightarrow \quad a \geq \frac{1}{32} \] ### Step 10: Conclusion Since \(a \leq \frac{1}{32}\) and \(a \geq \frac{1}{32}\), we conclude that there is exactly one solution to the equation. ### Final Answer The number of solutions is **1**. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If a<1/32 , then the number of solution of (sin^-1x)^3 + (cos^-1x)^3 = a pi^3/32 is (1) 0(2) 1 (3)2 (4)infinite

If sin^(-1)x=(pi)/(3) then cos^(-1)x

Number of solutions of equation sin((1)/(3)cos^(-1)x)=1 is/are:

If 0<=x<=2 pi, then the number of solutions of 3(sin x+cos x)-2(sin^(3)x+cos^(3)x)=8 is

Number of solutions of (cos x)^(5)+(sin x)^(3)=1 in [0,2 pi]

Find the set of values of parameter a so that the equation (sin^(-1)x)^(3)+(cos^(-1)x)^(3)=a pi^(3) has a solution.

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. Find the smallest and the largest values of tan^(-1) ((1 - x)/(1 + x))...

    Text Solution

    |

  2. The least and the greatest values of (sin^(-1)x)^3+(cos^(-1)x)^3 are (...

    Text Solution

    |

  3. If a le 1/32 then the number of solution of (sin^(-1) x)^(3) +(cos^(...

    Text Solution

    |

  4. If x takes negative permissible vlaue then sin^(-1)x=

    Text Solution

    |

  5. If -1 le x le -(1)/sqrt(2) then sin^(-1)2xsqrt(1-x^(2)) equals

    Text Solution

    |

  6. If (1)/sqrt(2) le x le 1 then sin^(-1) 2xsqrt(1-x^(2)) equals

    Text Solution

    |

  7. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  8. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  9. If -1/2 le x le 1/2 then sin^(-1)3x-4x^(3) equals

    Text Solution

    |

  10. If 1/2 le x le 1 then sin^(-1)3x-4x^(3) equals

    Text Solution

    |

  11. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  12. If 1/2 le x le 1 then cos^(-1)(4x^(3)-3x) equals

    Text Solution

    |

  13. if -1/2 le x le 1/2 then cos^(-1)(4x^(3)-3x) equals

    Text Solution

    |

  14. if -1 le x le -1/2 then cos^(-1)(4x^(3)-3x) equals

    Text Solution

    |

  15. If 1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

    Text Solution

    |

  16. If x in (1,oo) then tan^(-1)(2x)/(1-x^(2)) equals

    Text Solution

    |

  17. if x in (-oo,-1) then tan^(-1)(2x)/(1-x^(2)) equals

    Text Solution

    |

  18. If -(1)/sqrt(3) lt x lt (1)/sqrt(3), then tan^(-1) (3x-x^(3))/(1-3x^(...

    Text Solution

    |

  19. If x gt (1)/sqrt(3) then tan^(-1) (3x-x^(3))/(1-3x^(2)) equals

    Text Solution

    |

  20. If x lt -(1)/sqrt(3) , then tan^(-1)(3x-x^(3))/(1-3x^(2)) equals

    Text Solution

    |