Home
Class 12
MATHS
The value of cot(pi/4-2 cot^(-1)3) is...

The value of `cot(pi/4-2 cot^(-1)3)` is

A

1

B

7

C

-1

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \cot\left(\frac{\pi}{4} - 2 \cot^{-1}(3)\right) \), we can follow these steps: ### Step 1: Use the Cotangent Difference Formula We can use the cotangent difference formula: \[ \cot(A - B) = \frac{\cot A \cot B + 1}{\cot A + \cot B} \] In our case, let \( A = \frac{\pi}{4} \) and \( B = 2 \cot^{-1}(3) \). ### Step 2: Calculate \( \cot A \) Since \( A = \frac{\pi}{4} \): \[ \cot\left(\frac{\pi}{4}\right) = 1 \] ### Step 3: Calculate \( \cot B \) To find \( \cot(2 \cot^{-1}(3)) \), we first need to find \( \cot(\cot^{-1}(3)) \): \[ \cot(\cot^{-1}(3)) = 3 \] Now, we can use the double angle formula for cotangent: \[ \cot(2\theta) = \frac{\cot^2(\theta) - 1}{2 \cot(\theta)} \] Let \( \theta = \cot^{-1}(3) \), then: \[ \cot(2\theta) = \frac{3^2 - 1}{2 \cdot 3} = \frac{9 - 1}{6} = \frac{8}{6} = \frac{4}{3} \] ### Step 4: Substitute Values into the Cotangent Difference Formula Now we substitute \( \cot A \) and \( \cot B \) into the cotangent difference formula: \[ \cot\left(\frac{\pi}{4} - 2 \cot^{-1}(3)\right) = \frac{1 \cdot \frac{4}{3} + 1}{1 + \frac{4}{3}} = \frac{\frac{4}{3} + 1}{1 + \frac{4}{3}} \] ### Step 5: Simplify the Expression Now simplify the numerator and denominator: - The numerator: \[ \frac{4}{3} + 1 = \frac{4}{3} + \frac{3}{3} = \frac{7}{3} \] - The denominator: \[ 1 + \frac{4}{3} = \frac{3}{3} + \frac{4}{3} = \frac{7}{3} \] ### Step 6: Final Calculation Now, substituting back into the expression: \[ \cot\left(\frac{\pi}{4} - 2 \cot^{-1}(3)\right) = \frac{\frac{7}{3}}{\frac{7}{3}} = 1 \] Thus, the value of \( \cot\left(\frac{\pi}{4} - 2 \cot^{-1}(3)\right) \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The value of cot ((pi)/(2) - 2 cot^(-1) sqrt3) is :

cot(pi/2-2cot^(-1)sqrt3)

The value of cot((7 pi)/(16))+2cot((3 pi)/(8))+cot((15 pi)/(16)) is (a) 4(b)2(c)-2(d)-4

The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-(pi)/(2))cot^(-1)x-3tan^(-1)x-3(2-(pi)/(2))>0 is (a,b), then the value of cot ^(-1)a+cot^(-1)b is

The value of cot^(-1)(cot(7pi)/(4)) is:

Find the value of cosec { cot( cot^(-1).(3pi)/4)}

Prove that cot((pi)/(4)-2cot^(-1)3)=7

Find the value of cosec{cot(cot^(-1)(3pi)/4)}

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. If x lt -(1)/sqrt(3) , then tan^(-1)(3x-x^(3))/(1-3x^(2)) equals

    Text Solution

    |

  2. If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

    Text Solution

    |

  3. If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2)))equals

    Text Solution

    |

  4. If x in [-1,1] then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  5. If x in (1,oo) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  6. If x in (-oo,-1) then sin^(-1)((2x)/(1+x^(2))) equals

    Text Solution

    |

  7. If sin^(-1)((2x)/(1+x^(2)))+cos^(-1)((1-x^(2))/(1+x^(2)))=4 tan^(-1) x...

    Text Solution

    |

  8. If 2tan^(-1)x+sin^(-1)((2x)/(1+x^2) ) is independent of x then :

    Text Solution

    |

  9. If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

    Text Solution

    |

  10. The value of cos(tan^-1 (tan 2)) is

    Text Solution

    |

  11. If sec^(-1)x=cosec^(-1) y then cos^(-1)(1/x)+cos^(-1)(1/y)=

    Text Solution

    |

  12. Let cos(2 tan^(-1) x)=1/2 then the value of x is

    Text Solution

    |

  13. If tan^(-)(x/(pi))lt (pi)/(3) ,x in N then the maximum vlaue of x is

    Text Solution

    |

  14. Range of the function f (x) = cos^-1 (-{x}), where {.} is fractional ...

    Text Solution

    |

  15. sec^(-1)(sin x) exist if

    Text Solution

    |

  16. The value of cot(pi/4-2 cot^(-1)3) is

    Text Solution

    |

  17. [cot^(-1)x][cos^(-1) x] =0 where x is non negative and [.] is he great...

    Text Solution

    |

  18. The sum of the series cot^-1 2 + cot^-1 8 +cot^-1 18+cot^-1 32...........

    Text Solution

    |

  19. If cos^(-1)(x)/(2)+cos^(-1)(y)/(3)=theta then the maximum of 9x^(2)-12...

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, Prove xsqrt(1-x^2)+ysqrt(1-y^2)+z...

    Text Solution

    |