Home
Class 12
MATHS
lim(x rarr0)(x[x])/(sin|x|), where [.] d...

`lim_(x rarr0)(x[x])/(sin|x|)`, where `[.]` denote greater integer function

A

is equal to 0

B

is equal to infinity

C

is equal to 1

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{x \lfloor x \rfloor}{\sin |x|} \), where \( \lfloor . \rfloor \) denotes the greatest integer function, we will evaluate the left-hand limit and the right-hand limit separately. ### Step-by-Step Solution: 1. **Understanding the Greatest Integer Function**: The greatest integer function \( \lfloor x \rfloor \) gives the largest integer less than or equal to \( x \). 2. **Finding the Left-Hand Limit**: We need to evaluate \( \lim_{x \to 0^-} \frac{x \lfloor x \rfloor}{\sin |x|} \). - For \( x < 0 \), \( \lfloor x \rfloor \) will be \( -1 \) when \( x \) is in the interval \( (-1, 0) \). - Therefore, \( \lfloor x \rfloor = -1 \). - The expression becomes: \[ \lim_{x \to 0^-} \frac{x \cdot (-1)}{\sin(-x)} = \lim_{x \to 0^-} \frac{-x}{-\sin x} = \lim_{x \to 0^-} \frac{x}{\sin x} \] - As \( x \to 0 \), we know that \( \frac{x}{\sin x} \to 1 \). - Thus, the left-hand limit is: \[ \lim_{x \to 0^-} \frac{x \lfloor x \rfloor}{\sin |x|} = 1 \] 3. **Finding the Right-Hand Limit**: Now, we evaluate \( \lim_{x \to 0^+} \frac{x \lfloor x \rfloor}{\sin |x|} \). - For \( x \geq 0 \), \( \lfloor x \rfloor = 0 \) when \( 0 \leq x < 1 \). - Therefore, the expression becomes: \[ \lim_{x \to 0^+} \frac{x \cdot 0}{\sin x} = \lim_{x \to 0^+} \frac{0}{\sin x} = 0 \] - Thus, the right-hand limit is: \[ \lim_{x \to 0^+} \frac{x \lfloor x \rfloor}{\sin |x|} = 0 \] 4. **Conclusion**: Since the left-hand limit (1) is not equal to the right-hand limit (0), we conclude that the limit does not exist: \[ \lim_{x \to 0} \frac{x \lfloor x \rfloor}{\sin |x|} \text{ does not exist.} \] ### Final Answer: The limit does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0)(x)/(sin2x)

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

lt_(x rarr0)[(sin|x|)/(x)]= where [^(*)] denotes greater integer function )

lim_(x rarr0)(|x|)/(x)

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

lim_(x rarr0)[sin x]

Given lim_(x rarr0)(f(x))/(x^(2))=2, where [.] denotes the greatest integer function,then lim_(x rarr0)[f(x)]=0lim_(x rarr0)[f(x)]=1lim_(x rarr0)[(f(x))/(x)] does not exist lim _(x rarr0)[(f(x))/(x)] exists

Evaluate: lim_(x rarr0)(sin x)/(x), where [.] represents the greatest integer function.

lim_(x rarr0)(cot x)^(sin x)