Home
Class 12
MATHS
lim(xrarroo)(sqrt(x^(2)+sin^(2)x))/(x+co...

`lim_(xrarroo)(sqrt(x^(2)+sin^(2)x))/(x+cosx)`

A

is equal to 1

B

is equal to 0

C

is equal to `oo`

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \frac{\sqrt{x^2 + \sin^2 x}}{x + \cos x} \), we can follow these steps: ### Step 1: Simplify the expression We start by dividing both the numerator and the denominator by \( x \) (the highest power of \( x \) in the denominator): \[ \lim_{x \to \infty} \frac{\sqrt{x^2 + \sin^2 x}}{x + \cos x} = \lim_{x \to \infty} \frac{\sqrt{x^2(1 + \frac{\sin^2 x}{x^2})}}{x(1 + \frac{\cos x}{x})} \] ### Step 2: Factor out \( x \) from the square root In the numerator, we can factor \( x^2 \) out of the square root: \[ = \lim_{x \to \infty} \frac{x\sqrt{1 + \frac{\sin^2 x}{x^2}}}{x(1 + \frac{\cos x}{x})} \] ### Step 3: Cancel \( x \) Now, we can cancel \( x \) from the numerator and the denominator (since \( x \) approaches infinity and is positive): \[ = \lim_{x \to \infty} \frac{\sqrt{1 + \frac{\sin^2 x}{x^2}}}{1 + \frac{\cos x}{x}} \] ### Step 4: Evaluate the limit As \( x \) approaches infinity, \( \frac{\sin^2 x}{x^2} \) approaches \( 0 \) and \( \frac{\cos x}{x} \) also approaches \( 0 \): \[ = \frac{\sqrt{1 + 0}}{1 + 0} = \frac{\sqrt{1}}{1} = 1 \] ### Conclusion Thus, the limit is: \[ \lim_{x \to \infty} \frac{\sqrt{x^2 + \sin^2 x}}{x + \cos x} = 1 \] ### Final Answer The limit is equal to \( 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarroo) (sqrt(x^2+2x-1)-x)=

lim_(xrarroo) sqrt((x+sinx)/(x-cos x))=

lim_(xrarroo) (x^2-sinx)/(x^2-2)

Lim_(xrarroo)(x/(x+2))^x

lim_(xrarroo) (cosx)/(x)=?

lim_(xrarroo) (sinx)/(x)=?

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(x rarr0)(sin x)/(sqrt(x^(2)))=

lim_(xrarroo) (2x)/(1+4x)