Home
Class 12
MATHS
The value of lim(x->2) ([2-x]+[x-2]-x) ...

The value of `lim_(x->2) ([2-x]+[x-2]-x)` equals (where [.] denotes greatest integer function)

A

`-3`

B

0

C

3

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr2)([2-x]+[x-2]-x) equals (where [.] denotes greatest integer function)

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of lim_(x rarr0)[(sin x)/(x)] is (where [.] denotes greatest integer function)

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to