Home
Class 12
MATHS
Let f(x)=(sqrt(x+3))/(x+1), then lim(xra...

Let `f(x)=(sqrt(x+3))/(x+1)`, then `lim_(xrarr-3)f(x)`

A

is 0

B

does not exist

C

is `1//2`

D

is `-1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the function \( f(x) = \frac{\sqrt{x+3}}{x+1} \) as \( x \) approaches \(-3\), we can follow these steps: ### Step 1: Substitute \( x = -3 \) into \( f(x) \) We start by substituting \( x = -3 \) directly into the function: \[ f(-3) = \frac{\sqrt{-3 + 3}}{-3 + 1} = \frac{\sqrt{0}}{-2} = \frac{0}{-2} = 0 \] ### Step 2: Check the left-hand limit as \( x \) approaches \(-3\) To find the left-hand limit, we evaluate: \[ \lim_{x \to -3^-} f(x) = \lim_{h \to 0} f(-3 - h) = \lim_{h \to 0} \frac{\sqrt{-3 - h + 3}}{-3 - h + 1} \] This simplifies to: \[ \lim_{h \to 0} \frac{\sqrt{-h}}{-2 - h} \] As \( h \) approaches \( 0 \), this becomes: \[ \frac{0}{-2} = 0 \] ### Step 3: Check the right-hand limit as \( x \) approaches \(-3\) Now, we evaluate the right-hand limit: \[ \lim_{x \to -3^+} f(x) = \lim_{h \to 0} f(-3 + h) = \lim_{h \to 0} \frac{\sqrt{-3 + h + 3}}{-3 + h + 1} \] This simplifies to: \[ \lim_{h \to 0} \frac{\sqrt{h}}{-2 + h} \] As \( h \) approaches \( 0 \), this becomes: \[ \frac{0}{-2} = 0 \] ### Step 4: Conclude the limit Since both the left-hand limit and the right-hand limit as \( x \) approaches \(-3\) are equal: \[ \lim_{x \to -3} f(x) = 0 \] Thus, we can conclude that: \[ \lim_{x \to -3} f(x) = 0 \] ### Final Answer: \[ \lim_{x \to -3} f(x) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(tanx)/(x), then log_(e)(lim_(xrarr0)([f(x)]+x^(2))^((1)/({f(x)}))) is equal, (where [.] denotes greatest integer function and {.} fractional part)

If f(x) = (tanx)/(x-pi) , then lim_(xrarr(pi))f(x)= ……………….

If f(x) =(sin (e^(x-2)-))/(log(x-1)) then lim_(xrarr2)f(x) is given by

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

If f(x) =x(e^([x]+|x|)-2)/([x]+|x|) , then lim_(xrarr0)f(x) is.

If y(x)=|x|-3, "find"lim_(xrarr3)f(x).

If f(x)=lim_(nrarroo) (cos(x)/(sqrtn))^(n) , then the value of lim_(xrarr0) (f(x)-1)/(x) is

Let f(3)=4 and f'(3)=5 . Then lim_(xrarr3) [f(x)] (where [.] denotes the greatest integer function) is

Let f(x)={{:(x^(2)+1,, x 2) :} and lim_(xrarr2)f(x) exist, then the value of k is Select one: a. (1)/(2) b. 5 c. 4 d. 3

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1 then lim_(x rarr oo)(f(2x))/(f(x))=