Home
Class 12
MATHS
lim(nrarroo)((1)/(5))^((log(sqrt5)((1)/(...

`lim_(nrarroo)((1)/(5))^((log_(sqrt5)((1)/(4)+(1)/(8)+(1)/(16)+……."n terms"))` equals

A

2

B

4

C

8

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

underset(n rarr oo) ( "lim")( 0.2)^(logsqrt(5) (1//4+1//8+ 1//16+"............."n" terms" )) is equal to :

lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))

solve x^(2)=(0.2)^(log)((1)/(4)+(1)/(8)+(1)/(16)...) base sqrt(5)

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

Lim_(nrarroo)((n+2)!+(n+1)!)/((n+2)!-(n+1)!)

The value of lim_(nrarroo)(cos.(x)/(2)cos.(x)/(4)cos.(x)/(8)………cos.(x)/(2^(n+1))) is equal to

lim _(nrarroo)(1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}

The value of lim_(n rarr oo)n{(1)/(3n^(2)+8n+4)+(1)/(3n^(2)+16n+16)+...+ nterms } is equal to