Home
Class 12
MATHS
lim(xrarr0)(pi^(x)-1)/(sqrt(1+x)-1)...

`lim_(xrarr0)(pi^(x)-1)/(sqrt(1+x)-1)`

A

does not exist

B

equals `log_(e)(pi^(2))`

C

equals 1

D

lies between 10 and 11

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\pi^x - 1}{\sqrt{1+x} - 1} \), we can follow these steps: ### Step 1: Identify the form of the limit First, we substitute \( x = 0 \) into the expression: \[ \frac{\pi^0 - 1}{\sqrt{1+0} - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0} \] This is an indeterminate form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule. **Hint:** Check if substituting the limit gives an indeterminate form like \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \) before applying L'Hôpital's Rule. ### Step 2: Apply L'Hôpital's Rule According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: \[ \text{Numerator: } \frac{d}{dx}(\pi^x - 1) = \pi^x \ln(\pi) \] \[ \text{Denominator: } \frac{d}{dx}(\sqrt{1+x} - 1) = \frac{1}{2\sqrt{1+x}} \] Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{\pi^x \ln(\pi)}{\frac{1}{2\sqrt{1+x}}} \] **Hint:** Differentiate the numerator and denominator separately when applying L'Hôpital's Rule. ### Step 3: Simplify the expression The limit now becomes: \[ \lim_{x \to 0} \frac{\pi^x \ln(\pi) \cdot 2\sqrt{1+x}}{1} \] We can evaluate this limit by substituting \( x = 0 \): \[ = \pi^0 \ln(\pi) \cdot 2\sqrt{1+0} = 1 \cdot \ln(\pi) \cdot 2 \cdot 1 = 2 \ln(\pi) \] **Hint:** Substitute \( x = 0 \) into the simplified expression to find the limit. ### Step 4: Final answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\pi^x - 1}{\sqrt{1+x} - 1} = 2 \ln(\pi) \] ### Summary The final answer is: \[ \boxed{2 \ln(\pi)} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|15 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits: lim_(xrarr0)((2^(x)-1)/(x))

lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(xrarr0)(e^(1//x)-1)/(e^(1//x)+1)=

Find the limits : lim_(xrarr0){(sqrt(x-1)-sqrt(1-x))/x}

lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is

The value of lim_(xrarr0)(sqrt(x^+1)-1)/(sqrt(x^2+9)-3) , is

lim_(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

lim_(xrarr0) ((x+1)^(5)-1)/(x)