Home
Class 12
MATHS
The limit of [(1)/(x)sqrt(1+x)-sqrt(1+(1...

The limit of `[(1)/(x)sqrt(1+x)-sqrt(1+(1)/(x^(2))]]` as ` x rarr0`

A

does not exist

B

is equal to 1/2

C

is equal to 0

D

is equal to 1

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit of the expression \[ \lim_{x \to 0} \left( \frac{1}{x \sqrt{1+x}} - \sqrt{1+\frac{1}{x^2}} \right), \] we will simplify the expression step by step. ### Step 1: Rewrite the expression We start by rewriting the limit: \[ L = \lim_{x \to 0} \left( \frac{1}{x \sqrt{1+x}} - \sqrt{1+\frac{1}{x^2}} \right). \] ### Step 2: Find a common denominator To combine the two fractions, we need a common denominator. The common denominator will be \( x \sqrt{1+x} \): \[ L = \lim_{x \to 0} \left( \frac{1 - x \sqrt{1+\frac{1}{x^2}} \cdot \sqrt{1+x}}{x \sqrt{1+x}} \right). \] ### Step 3: Simplify the square root term Next, we simplify the square root term: \[ \sqrt{1+\frac{1}{x^2}} = \sqrt{\frac{x^2 + 1}{x^2}} = \frac{\sqrt{x^2 + 1}}{x}. \] Substituting this back into our limit gives: \[ L = \lim_{x \to 0} \left( \frac{1 - \sqrt{x^2 + 1} \cdot \sqrt{1+x}}{x \sqrt{1+x}} \right). \] ### Step 4: Expand the square root using Taylor series As \( x \to 0 \), we can use the Taylor series expansion for \( \sqrt{1+x} \) and \( \sqrt{x^2+1} \): \[ \sqrt{1+x} \approx 1 + \frac{x}{2}, \quad \sqrt{x^2 + 1} \approx 1 + \frac{x^2}{2}. \] Substituting these approximations into the limit gives: \[ L = \lim_{x \to 0} \left( \frac{1 - (1 + \frac{x^2}{2})(1 + \frac{x}{2})}{x(1 + \frac{x}{2})} \right). \] ### Step 5: Simplify the numerator Now simplify the numerator: \[ 1 - \left( 1 + \frac{x^2}{2} + \frac{x}{2} + \frac{x^3}{4} \right) = -\frac{x^2}{2} - \frac{x}{2} - \frac{x^3}{4}. \] ### Step 6: Substitute back into the limit Now substitute this back into the limit: \[ L = \lim_{x \to 0} \left( \frac{-\frac{x^2}{2} - \frac{x}{2} - \frac{x^3}{4}}{x(1 + \frac{x}{2})} \right). \] ### Step 7: Factor out \( x \) Factoring out \( x \) from the numerator gives: \[ L = \lim_{x \to 0} \left( \frac{-\frac{x}{2} - \frac{1}{2} - \frac{x^2}{4}}{1 + \frac{x}{2}} \right). \] ### Step 8: Evaluate the limit As \( x \to 0 \): \[ L = \frac{-\frac{0}{2} - \frac{1}{2} - 0}{1 + 0} = -\frac{1}{2}. \] Thus, the limit is: \[ \boxed{-\frac{1}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)sqrt(1-sqrt(1-x^(2)))

lim_(x rarr0)(x)/(sqrt(1+x)-sqrt(1-x))

lim_(x rarr0)(sqrt(2)-sqrt(1cos x))/(x^(2))

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

lim_(x rarr0)(sqrt(1+sin x)-sqrt(1-sin x))/(x)

Lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(x)

lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(x)

lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(x)=?

lim_(x rarr0)((sqrt(1+x)-1)/(x))

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+3x)-sqrt(1-3x))/(x^(2)-1)

MTG-WBJEE-LIMITS AND CONTINUITY-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)
  1. The limit of [(1)/(x^(2))+((2)^(x))/(e^(x)-1)-(1)/(e^(x)-1)] as x rarr...

    Text Solution

    |

  2. The limit of [(1)/(x)sqrt(1+x)-sqrt(1+(1)/(x^(2))]] as x rarr0

    Text Solution

    |

  3. The limit of x sin (e^(-1//x)) as x rarr0

    Text Solution

    |

  4. The limit of sum(n=1)^(1000)(-1)^(n)x^(n) as x rarroo

    Text Solution

    |

  5. The function f(x)=(tan{pi[x-(pi)/(2)]})/(2+[x]^(2)), where [x] denotes...

    Text Solution

    |

  6. LEt f(x) be a differentiable function and f'(4)=5. Then, lim(x->2)(f(4...

    Text Solution

    |

  7. If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)x) exists and is equal to 1, t...

    Text Solution

    |

  8. Let [x] denote the greatest integer less than or equal to x for any re...

    Text Solution

    |

  9. If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3, then the value of a and ...

    Text Solution

    |

  10. Let f : R -> R be defined as f(x)={0, x is irrational sin|x|, x is ...

    Text Solution

    |

  11. Let x(n)=(1-(1)/(3))^(2)(1-(1)/(6))^(2)(1-(1)/(10))^(2)…(1-(1)/((n(n+1...

    Text Solution

    |

  12. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  13. Let f:[-2, 2]rarrR be a continuous function such that f(x) assumes onl...

    Text Solution

    |

  14. lim(x rarr 1)((1+x)/(2+x))^((1-sqrt(x))/(1-x))

    Text Solution

    |

  15. the value of lim(n->oo) {sqrt(n+1)+sqrt(n+2)+...........+sqrt(2n-1)}/n...

    Text Solution

    |

  16. If f''(x)=k,k != 0 , then the value of lim(x->0)(2f(x)-3f(2x)+f(4x))...

    Text Solution

    |

  17. lim(xrarr0)(sinx)^(2tanx)

    Text Solution

    |

  18. The value of lim(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)] is

    Text Solution

    |

  19. f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7, then is the value of lim(...

    Text Solution

    |

  20. Let f:[a, b] rarrR be such that f is differentiable in (a, b), f is co...

    Text Solution

    |