Home
Class 12
MATHS
If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)...

If `lim_(xrarr0)(2a sin x-sin 2x)/(tan^(3)x)` exists and is equal to 1, then the value of a is

A

2

B

1

C

0

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to evaluate the limit: \[ \lim_{x \to 0} \frac{2a \sin x - \sin 2x}{\tan^3 x} \] and find the value of \( a \) such that this limit equals 1. ### Step 1: Rewrite the limit We start with the limit expression: \[ L = \lim_{x \to 0} \frac{2a \sin x - \sin 2x}{\tan^3 x} \] ### Step 2: Use the identity for \(\sin 2x\) Recall that \(\sin 2x = 2 \sin x \cos x\). Thus, we can rewrite the limit as: \[ L = \lim_{x \to 0} \frac{2a \sin x - 2 \sin x \cos x}{\tan^3 x} \] ### Step 3: Factor out \(2 \sin x\) Factoring out \(2 \sin x\) from the numerator gives: \[ L = \lim_{x \to 0} \frac{2 \sin x (a - \cos x)}{\tan^3 x} \] ### Step 4: Rewrite \(\tan x\) We know that \(\tan x = \frac{\sin x}{\cos x}\), therefore \(\tan^3 x = \frac{\sin^3 x}{\cos^3 x}\). Substituting this in gives: \[ L = \lim_{x \to 0} \frac{2 \sin x (a - \cos x) \cos^3 x}{\sin^3 x} \] ### Step 5: Simplify the expression This simplifies to: \[ L = \lim_{x \to 0} 2(a - \cos x) \frac{\cos^3 x}{\sin^2 x} \] ### Step 6: Evaluate the limit As \(x\) approaches 0, \(\cos x\) approaches 1, and we can use the limit: \[ \lim_{x \to 0} \frac{a - \cos x}{x^2} = \frac{1}{2} \] This is a standard limit, which states that: \[ \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \] ### Step 7: Set up the equation Thus, we have: \[ L = 2 \cdot \lim_{x \to 0} \frac{a - \cos x}{\sin^2 x} \cdot \cos^3(0) \] Since \(\cos(0) = 1\): \[ L = 2 \cdot \lim_{x \to 0} \frac{a - \cos x}{x^2} \] ### Step 8: Set the limit equal to 1 We know that: \[ \lim_{x \to 0} \frac{a - \cos x}{x^2} = \frac{1}{2} \] Thus: \[ 2 \cdot \frac{1}{2} = 1 \] ### Step 9: Solve for \(a\) From the limit, we have: \[ a - \cos x \approx \frac{1}{2} x^2 \] At \(x = 0\), \(\cos 0 = 1\): \[ a - 1 = 0 \implies a = 1 \] ### Conclusion Thus, the value of \(a\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sin 3x)/x

lim_(xrarr0) (sin4x-sin2x+x)/(x)=?

If lim_(x rarr0)(x^(-3)sin3x+ax^(-2)+b) exists and is equal to 0 then

Evaluate: lim_(xrarr0) (tan x-sin x)/(x^(3))

lim_(xrarr0) (tan 4x)/(tan 2x)

If lim_(xrarr0)(2ax+(a-1)sinx)/(tan^3x)=l ,then a+l is equal to

lim_(xrarr0)(sin (pisin^(2)x))/(x^(2))=

If lim_(xrarr0)(sin2x-a sin x)/(((x)/(3))^(3))=L exists finitely, then the absolute value of L is equal to

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

MTG-WBJEE-LIMITS AND CONTINUITY-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)
  1. The function f(x)=(tan{pi[x-(pi)/(2)]})/(2+[x]^(2)), where [x] denotes...

    Text Solution

    |

  2. LEt f(x) be a differentiable function and f'(4)=5. Then, lim(x->2)(f(4...

    Text Solution

    |

  3. If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)x) exists and is equal to 1, t...

    Text Solution

    |

  4. Let [x] denote the greatest integer less than or equal to x for any re...

    Text Solution

    |

  5. If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3, then the value of a and ...

    Text Solution

    |

  6. Let f : R -> R be defined as f(x)={0, x is irrational sin|x|, x is ...

    Text Solution

    |

  7. Let x(n)=(1-(1)/(3))^(2)(1-(1)/(6))^(2)(1-(1)/(10))^(2)…(1-(1)/((n(n+1...

    Text Solution

    |

  8. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  9. Let f:[-2, 2]rarrR be a continuous function such that f(x) assumes onl...

    Text Solution

    |

  10. lim(x rarr 1)((1+x)/(2+x))^((1-sqrt(x))/(1-x))

    Text Solution

    |

  11. the value of lim(n->oo) {sqrt(n+1)+sqrt(n+2)+...........+sqrt(2n-1)}/n...

    Text Solution

    |

  12. If f''(x)=k,k != 0 , then the value of lim(x->0)(2f(x)-3f(2x)+f(4x))...

    Text Solution

    |

  13. lim(xrarr0)(sinx)^(2tanx)

    Text Solution

    |

  14. The value of lim(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)] is

    Text Solution

    |

  15. f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7, then is the value of lim(...

    Text Solution

    |

  16. Let f:[a, b] rarrR be such that f is differentiable in (a, b), f is co...

    Text Solution

    |

  17. lim(xrarr0^(+))(x^(n)lnx), n gt0

    Text Solution

    |

  18. lim(n->oo) 3/n[1+sqrt(n/(n+3)) + sqrt(n/(n+6)) + sqrt(n/(n+9)) +.........

    Text Solution

    |

  19. The limit of the interior angle of a regular polygon of n sides as n r...

    Text Solution

    |

  20. lim(xrarr0^(+))(e^(x)+x)^((1//x))

    Text Solution

    |