Home
Class 12
MATHS
If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2...

If `lim_(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3`, then the value of a and b are respectively.

A

2, 2

B

1, 2

C

2, 1

D

2, 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{a x e^x - b \log(1+x)}{x^2} = 3, \] we will follow these steps: ### Step 1: Expand \(e^x\) and \(\log(1+x)\) Using Taylor series expansions around \(x = 0\): - The expansion of \(e^x\) is: \[ e^x = 1 + x + \frac{x^2}{2} + O(x^3). \] - The expansion of \(\log(1+x)\) is: \[ \log(1+x) = x - \frac{x^2}{2} + O(x^3). \] ### Step 2: Substitute the expansions into the limit Substituting these expansions into the expression we have: \[ a x e^x = a x \left(1 + x + \frac{x^2}{2} + O(x^3)\right) = a x + a x^2 + \frac{a x^3}{2} + O(x^4), \] \[ b \log(1+x) = b \left(x - \frac{x^2}{2} + O(x^3)\right) = b x - \frac{b x^2}{2} + O(x^3). \] ### Step 3: Combine the terms Now, we can combine these results in the limit: \[ a x e^x - b \log(1+x) = (a x + a x^2 + \frac{a x^3}{2}) - (b x - \frac{b x^2}{2}) + O(x^3). \] This simplifies to: \[ (a - b)x + \left(a + \frac{b}{2}\right)x^2 + O(x^3). \] ### Step 4: Write the limit expression Now, we can write the limit expression: \[ \frac{(a - b)x + \left(a + \frac{b}{2}\right)x^2 + O(x^3)}{x^2}. \] This simplifies to: \[ \frac{(a - b)}{x} + \left(a + \frac{b}{2}\right) + O(x). \] ### Step 5: Evaluate the limit as \(x \to 0\) For the limit to exist and equal 3, the coefficient of \(\frac{1}{x}\) must be zero, which gives us the first equation: \[ a - b = 0 \quad \Rightarrow \quad a = b. \] The remaining term must equal 3: \[ a + \frac{b}{2} = 3. \] ### Step 6: Substitute \(b = a\) into the second equation Substituting \(b = a\) into the second equation: \[ a + \frac{a}{2} = 3 \quad \Rightarrow \quad \frac{3a}{2} = 3 \quad \Rightarrow \quad 3a = 6 \quad \Rightarrow \quad a = 2. \] ### Step 7: Find \(b\) Since \(a = b\), we have: \[ b = 2. \] ### Final Result Thus, the values of \(a\) and \(b\) are: \[ \boxed{(2, 2)}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

If lim_(xrarr0) (e^(ax)-e^(x)-x)/(x^(2))=b (finite), then

lim_(xrarr0) (x^(2)-3x+2)

If lim_(xrarr0) (cosx+a sinbx)^(1//x)= e^2 , then the values of a and b are

lim_(xrarr0)(2log(1+x)-log(1+2x))/(x^2) is equal to

lim_(xrarr0) (ax+b)/(cx+1)

lim_(xrarr0) (6^(x)-3x^(2)-2^(x)+1)/(x^(2))=?

If lim_(xrarr0) (log (3+x)-log (3-x))/(x)=k , the value of k is

lim_(xrarr0) (ax+x cos x)/(b sinx)

Evalute lim_(xrarr0)((e^(3x)-1)/(x)).

MTG-WBJEE-LIMITS AND CONTINUITY-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)
  1. The function f(x)=(tan{pi[x-(pi)/(2)]})/(2+[x]^(2)), where [x] denotes...

    Text Solution

    |

  2. LEt f(x) be a differentiable function and f'(4)=5. Then, lim(x->2)(f(4...

    Text Solution

    |

  3. If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)x) exists and is equal to 1, t...

    Text Solution

    |

  4. Let [x] denote the greatest integer less than or equal to x for any re...

    Text Solution

    |

  5. If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3, then the value of a and ...

    Text Solution

    |

  6. Let f : R -> R be defined as f(x)={0, x is irrational sin|x|, x is ...

    Text Solution

    |

  7. Let x(n)=(1-(1)/(3))^(2)(1-(1)/(6))^(2)(1-(1)/(10))^(2)…(1-(1)/((n(n+1...

    Text Solution

    |

  8. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  9. Let f:[-2, 2]rarrR be a continuous function such that f(x) assumes onl...

    Text Solution

    |

  10. lim(x rarr 1)((1+x)/(2+x))^((1-sqrt(x))/(1-x))

    Text Solution

    |

  11. the value of lim(n->oo) {sqrt(n+1)+sqrt(n+2)+...........+sqrt(2n-1)}/n...

    Text Solution

    |

  12. If f''(x)=k,k != 0 , then the value of lim(x->0)(2f(x)-3f(2x)+f(4x))...

    Text Solution

    |

  13. lim(xrarr0)(sinx)^(2tanx)

    Text Solution

    |

  14. The value of lim(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)] is

    Text Solution

    |

  15. f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7, then is the value of lim(...

    Text Solution

    |

  16. Let f:[a, b] rarrR be such that f is differentiable in (a, b), f is co...

    Text Solution

    |

  17. lim(xrarr0^(+))(x^(n)lnx), n gt0

    Text Solution

    |

  18. lim(n->oo) 3/n[1+sqrt(n/(n+3)) + sqrt(n/(n+6)) + sqrt(n/(n+9)) +.........

    Text Solution

    |

  19. The limit of the interior angle of a regular polygon of n sides as n r...

    Text Solution

    |

  20. lim(xrarr0^(+))(e^(x)+x)^((1//x))

    Text Solution

    |