Home
Class 12
MATHS
Let [x] denote the greatest integer less...

Let [x] denote the greatest integer less than or equal to x. Then the value of `alpha` for which the function `f(x)=[((sin[-x^2])/([-x^2]), x != 0),(alpha,x=0))` is continuous at x = 0 is (A) `alpha=0` (B) `alpha=sin(-1)` (C) `alpha=sin(1)` (D) `alpha=1`

A

`alpha=0`

B

`alpha=sin(-1)`

C

`alpha=sin(1)`

D

`alpha=1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

The value of parameter alpha, for which the function f(x)=1+alpha x,alpha!=0 is the inverse of itself

If function f(x)=((sin x)/(sin alpha))^((1)/(x-a)) where alpha!=m pi(m in I) is continuous than

If f(x)=(tan x cot alpha)^((1)/(x-a)),x!=alpha is continuous at x=alpha, then the value of f(alpha) is

f(x)=(1-cos alpha x)/(x sin x), for x!=0,(1)/(2), for x=0 If f is continuous at x=0, then

int_ (0) ^ (pi) (xdx) / (1 + cos alpha * sin x) = (pi alpha) / (sin alpha), 0

If cos y=x cos(alpha-y) then (1+x^(2)-2x cos alpha)*(dy)/(dx) is (A) sin alpha (B) -sin alpha (C) cos alpha (D) -cos alpha

If f(x)=x^(11)+x^(9)-x^(7)+x^(3)+1 and f(sin^(-1)(sin8))=alpha,alpha is constant,then f(tan^(-1)(tan8)) is equal to (A) alpha(B)alpha-2 (C) alpha+2(D)2-alpha

Let f(x) = (alpha x^(2))/(x + 1), x ne - 1 , The value of alpha for which f(a) = a , (a ne 0 ) is

MTG-WBJEE-LIMITS AND CONTINUITY-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)
  1. The function f(x)=(tan{pi[x-(pi)/(2)]})/(2+[x]^(2)), where [x] denotes...

    Text Solution

    |

  2. LEt f(x) be a differentiable function and f'(4)=5. Then, lim(x->2)(f(4...

    Text Solution

    |

  3. If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)x) exists and is equal to 1, t...

    Text Solution

    |

  4. Let [x] denote the greatest integer less than or equal to x for any re...

    Text Solution

    |

  5. If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3, then the value of a and ...

    Text Solution

    |

  6. Let f : R -> R be defined as f(x)={0, x is irrational sin|x|, x is ...

    Text Solution

    |

  7. Let x(n)=(1-(1)/(3))^(2)(1-(1)/(6))^(2)(1-(1)/(10))^(2)…(1-(1)/((n(n+1...

    Text Solution

    |

  8. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  9. Let f:[-2, 2]rarrR be a continuous function such that f(x) assumes onl...

    Text Solution

    |

  10. lim(x rarr 1)((1+x)/(2+x))^((1-sqrt(x))/(1-x))

    Text Solution

    |

  11. the value of lim(n->oo) {sqrt(n+1)+sqrt(n+2)+...........+sqrt(2n-1)}/n...

    Text Solution

    |

  12. If f''(x)=k,k != 0 , then the value of lim(x->0)(2f(x)-3f(2x)+f(4x))...

    Text Solution

    |

  13. lim(xrarr0)(sinx)^(2tanx)

    Text Solution

    |

  14. The value of lim(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)] is

    Text Solution

    |

  15. f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7, then is the value of lim(...

    Text Solution

    |

  16. Let f:[a, b] rarrR be such that f is differentiable in (a, b), f is co...

    Text Solution

    |

  17. lim(xrarr0^(+))(x^(n)lnx), n gt0

    Text Solution

    |

  18. lim(n->oo) 3/n[1+sqrt(n/(n+3)) + sqrt(n/(n+6)) + sqrt(n/(n+9)) +.........

    Text Solution

    |

  19. The limit of the interior angle of a regular polygon of n sides as n r...

    Text Solution

    |

  20. lim(xrarr0^(+))(e^(x)+x)^((1//x))

    Text Solution

    |