Home
Class 12
MATHS
lim(xrarr0)(sinx)^(2tanx)...

`lim_(xrarr0)(sinx)^(2tanx)`

A

is 2

B

is 1

C

is 0

D

does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} (\sin x)^{2 \tan x} \), we can follow these steps: ### Step 1: Define the limit Let \( y = (\sin x)^{2 \tan x} \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we have: \[ \ln y = 2 \tan x \cdot \ln(\sin x) \] ### Step 3: Analyze the limit We need to find: \[ \lim_{x \to 0} \ln y = \lim_{x \to 0} 2 \tan x \cdot \ln(\sin x) \] As \( x \to 0 \), both \( \tan x \) and \( \ln(\sin x) \) approach 0, leading to an indeterminate form \( 0 \cdot (-\infty) \). ### Step 4: Rewrite the limit To resolve this, we can rewrite the limit as: \[ \lim_{x \to 0} 2 \cdot \frac{\ln(\sin x)}{\cot x} \] This is now in the form \( \frac{0}{0} \). ### Step 5: Apply L'Hôpital's Rule Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\ln(\sin x)}{\cot x} = \lim_{x \to 0} \frac{\frac{d}{dx}(\ln(\sin x))}{\frac{d}{dx}(\cot x)} \] ### Step 6: Differentiate the numerator and denominator The derivative of \( \ln(\sin x) \) is: \[ \frac{1}{\sin x} \cdot \cos x = \cot x \] The derivative of \( \cot x \) is: \[ -\csc^2 x \] Thus, we have: \[ \lim_{x \to 0} \frac{\cot x}{-\csc^2 x} = \lim_{x \to 0} \frac{\cot x \cdot \sin^2 x}{-1} \] ### Step 7: Simplify the limit This simplifies to: \[ \lim_{x \to 0} -\sin^2 x \cdot \cot x = \lim_{x \to 0} -\sin^2 x \cdot \frac{\cos x}{\sin x} = \lim_{x \to 0} -\sin x \cdot \cos x \] As \( x \to 0 \), this limit approaches: \[ 0 \] ### Step 8: Conclude the limit for \( \ln y \) Thus, we have: \[ \lim_{x \to 0} \ln y = 0 \] ### Step 9: Exponentiate to find \( y \) Exponentiating both sides gives: \[ y = e^0 = 1 \] ### Final Result Therefore, the limit is: \[ \lim_{x \to 0} (\sin x)^{2 \tan x} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (sinx)/(x)= ?

Prove that [lim_(xrarr0) (sinx.tanx)/(x^(2))]=1 ,where [.] represents greatest integer function.

Evaluate the following limits: lim_(xrarr0)((x^(2)-tan2x))/(tanx)

For xgt0, lim_(xrarr0) {(sinx)^(1//x)+((1)/(x))^sinx} , is

lim_(xrarr0) (sinax)/(sinbx),a,bne0

lim_(xrarr0)(tanx-x)/(x^2tanx) equals

The value lim_(xrarr pi//2)(sinx)^(tanx) , is

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is

lim_(xrarr0) (sinx^n)/((sinx)^m), (mltn) is equal to

lim_(xrarr0)(|sinx|)/(x) is equal to

MTG-WBJEE-LIMITS AND CONTINUITY-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)
  1. The function f(x)=(tan{pi[x-(pi)/(2)]})/(2+[x]^(2)), where [x] denotes...

    Text Solution

    |

  2. LEt f(x) be a differentiable function and f'(4)=5. Then, lim(x->2)(f(4...

    Text Solution

    |

  3. If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)x) exists and is equal to 1, t...

    Text Solution

    |

  4. Let [x] denote the greatest integer less than or equal to x for any re...

    Text Solution

    |

  5. If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3, then the value of a and ...

    Text Solution

    |

  6. Let f : R -> R be defined as f(x)={0, x is irrational sin|x|, x is ...

    Text Solution

    |

  7. Let x(n)=(1-(1)/(3))^(2)(1-(1)/(6))^(2)(1-(1)/(10))^(2)…(1-(1)/((n(n+1...

    Text Solution

    |

  8. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  9. Let f:[-2, 2]rarrR be a continuous function such that f(x) assumes onl...

    Text Solution

    |

  10. lim(x rarr 1)((1+x)/(2+x))^((1-sqrt(x))/(1-x))

    Text Solution

    |

  11. the value of lim(n->oo) {sqrt(n+1)+sqrt(n+2)+...........+sqrt(2n-1)}/n...

    Text Solution

    |

  12. If f''(x)=k,k != 0 , then the value of lim(x->0)(2f(x)-3f(2x)+f(4x))...

    Text Solution

    |

  13. lim(xrarr0)(sinx)^(2tanx)

    Text Solution

    |

  14. The value of lim(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)] is

    Text Solution

    |

  15. f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7, then is the value of lim(...

    Text Solution

    |

  16. Let f:[a, b] rarrR be such that f is differentiable in (a, b), f is co...

    Text Solution

    |

  17. lim(xrarr0^(+))(x^(n)lnx), n gt0

    Text Solution

    |

  18. lim(n->oo) 3/n[1+sqrt(n/(n+3)) + sqrt(n/(n+6)) + sqrt(n/(n+9)) +.........

    Text Solution

    |

  19. The limit of the interior angle of a regular polygon of n sides as n r...

    Text Solution

    |

  20. lim(xrarr0^(+))(e^(x)+x)^((1//x))

    Text Solution

    |