Home
Class 12
MATHS
lim(xrarr0^(+))(x^(n)lnx), n gt0...

`lim_(xrarr0^(+))(x^(n)lnx), n gt0`

A

does not exist

B

exists and is zero

C

exists and is 1

D

exists and is `e^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0^+} (x^n \ln x) \) where \( n > 0 \), we can follow these steps: ### Step 1: Substitute \( x \) We can substitute \( x \) with \( e^{-t} \), where \( t \to \infty \) as \( x \to 0^+ \). This gives us: \[ \lim_{x \to 0^+} (x^n \ln x) = \lim_{t \to \infty} ((e^{-t})^n \ln(e^{-t})) \] ### Step 2: Simplify the expression The expression simplifies to: \[ \ln(e^{-t}) = -t \] Thus, we have: \[ \lim_{t \to \infty} (e^{-nt} \cdot (-t)) = -\lim_{t \to \infty} \frac{t}{e^{nt}} \] ### Step 3: Analyze the limit Now we need to evaluate: \[ -\lim_{t \to \infty} \frac{t}{e^{nt}} \] This is an indeterminate form of type \( \frac{\infty}{\infty} \), so we can apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Differentiating the numerator and denominator: - The derivative of the numerator \( t \) is \( 1 \). - The derivative of the denominator \( e^{nt} \) is \( n e^{nt} \). Thus, we have: \[ -\lim_{t \to \infty} \frac{1}{n e^{nt}} = -\frac{1}{n} \cdot \lim_{t \to \infty} \frac{1}{e^{nt}} \] ### Step 5: Evaluate the limit As \( t \to \infty \), \( e^{nt} \to \infty \), so: \[ \lim_{t \to \infty} \frac{1}{e^{nt}} = 0 \] Thus, we conclude: \[ -\frac{1}{n} \cdot 0 = 0 \] ### Final Result Therefore, the limit is: \[ \lim_{x \to 0^+} (x^n \ln x) = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

Value of limit lim_(xrarr0^(+))x^(x^(x)).ln(x) is

lim_(xrarr0) (x^(2)-x)/(sinx)

The value of lim_(xrarroo) (logx)/(x^n), n gt 0 , is

lim_(xrarr0)x sec x

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr0) (sin 3x)/x

lim_(xrarr0)""(sin|x|)/(x)

lim_(xrarr0) x sec x

lim_(xrarr0)(sin(x)/(4))/(x)

MTG-WBJEE-LIMITS AND CONTINUITY-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)
  1. The function f(x)=(tan{pi[x-(pi)/(2)]})/(2+[x]^(2)), where [x] denotes...

    Text Solution

    |

  2. LEt f(x) be a differentiable function and f'(4)=5. Then, lim(x->2)(f(4...

    Text Solution

    |

  3. If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)x) exists and is equal to 1, t...

    Text Solution

    |

  4. Let [x] denote the greatest integer less than or equal to x for any re...

    Text Solution

    |

  5. If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3, then the value of a and ...

    Text Solution

    |

  6. Let f : R -> R be defined as f(x)={0, x is irrational sin|x|, x is ...

    Text Solution

    |

  7. Let x(n)=(1-(1)/(3))^(2)(1-(1)/(6))^(2)(1-(1)/(10))^(2)…(1-(1)/((n(n+1...

    Text Solution

    |

  8. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  9. Let f:[-2, 2]rarrR be a continuous function such that f(x) assumes onl...

    Text Solution

    |

  10. lim(x rarr 1)((1+x)/(2+x))^((1-sqrt(x))/(1-x))

    Text Solution

    |

  11. the value of lim(n->oo) {sqrt(n+1)+sqrt(n+2)+...........+sqrt(2n-1)}/n...

    Text Solution

    |

  12. If f''(x)=k,k != 0 , then the value of lim(x->0)(2f(x)-3f(2x)+f(4x))...

    Text Solution

    |

  13. lim(xrarr0)(sinx)^(2tanx)

    Text Solution

    |

  14. The value of lim(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)] is

    Text Solution

    |

  15. f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7, then is the value of lim(...

    Text Solution

    |

  16. Let f:[a, b] rarrR be such that f is differentiable in (a, b), f is co...

    Text Solution

    |

  17. lim(xrarr0^(+))(x^(n)lnx), n gt0

    Text Solution

    |

  18. lim(n->oo) 3/n[1+sqrt(n/(n+3)) + sqrt(n/(n+6)) + sqrt(n/(n+9)) +.........

    Text Solution

    |

  19. The limit of the interior angle of a regular polygon of n sides as n r...

    Text Solution

    |

  20. lim(xrarr0^(+))(e^(x)+x)^((1//x))

    Text Solution

    |