Home
Class 12
MATHS
lim(xrarr0^(+))(e^(x)+x)^((1//x))...

`lim_(xrarr0^(+))(e^(x)+x)^((1//x))`

A

does not exist finitely

B

is 1

C

is `e^(2)`

D

is 2

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0^+} (e^x + x)^{\frac{1}{x}}, \] we can start by rewriting the expression in a more manageable form. ### Step 1: Rewrite the limit using logarithms Let \( y = (e^x + x)^{\frac{1}{x}} \). Taking the natural logarithm of both sides gives: \[ \ln y = \frac{1}{x} \ln(e^x + x). \] ### Step 2: Find the limit of \(\ln y\) Now we need to find: \[ \lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} \frac{\ln(e^x + x)}{x}. \] ### Step 3: Evaluate the limit using L'Hôpital's Rule As \( x \to 0^+ \), both the numerator and denominator approach 0, which gives us a \( \frac{0}{0} \) form. We can apply L'Hôpital's Rule: \[ \lim_{x \to 0^+} \frac{\ln(e^x + x)}{x} = \lim_{x \to 0^+} \frac{\frac{d}{dx}[\ln(e^x + x)]}{\frac{d}{dx}[x]}. \] ### Step 4: Differentiate the numerator and denominator The derivative of the numerator is: \[ \frac{d}{dx}[\ln(e^x + x)] = \frac{e^x + 1}{e^x + x}. \] The derivative of the denominator is simply 1. Thus, we have: \[ \lim_{x \to 0^+} \frac{e^x + 1}{e^x + x}. \] ### Step 5: Evaluate the limit Now substituting \( x = 0 \): \[ \lim_{x \to 0^+} \frac{e^0 + 1}{e^0 + 0} = \frac{1 + 1}{1 + 0} = \frac{2}{1} = 2. \] ### Step 6: Substitute back to find \( y \) Since we found that \[ \lim_{x \to 0^+} \ln y = 2, \] we can exponentiate both sides to find \( y \): \[ \lim_{x \to 0^+} y = e^2. \] ### Conclusion Thus, the limit is: \[ \lim_{x \to 0^+} (e^x + x)^{\frac{1}{x}} = e^2. \] ### Final Answer The final answer is: \[ e^2. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE)|5 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WB JEE WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MTG-WBJEE|Exercise WB JEE Previous Years Questions ( CATEGORY 1 : Single Option Correct Type (1 Mark))|6 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos

Similar Questions

Explore conceptually related problems

Find the following: lim_(xrarr0^+)({x})^(1//x)

lim_(xrarr0)(e^(1//x)-1)/(e^(1//x)+1)=

lim_(xrarr0)((x-1+cosx)/(x))^(1//x)

Evaluate the following limits: lim_(xrarr0)((e^(4x)-1)/(x))

Find the following: lim_(xrarr0^+)(1+{x})^(1//x)

Evalute lim_(xrarr0)((e^(3x)-1)/(x)).

If lim_(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim_(xrarr0) [1+(f(x))/(x)]^(1//x)=

Evaluate : lim_(xrarr0 )(e ^(sinx)-1)/(x)

Evaluate the following limits: lim_(xrarr0)((e^(2+x)-e^(2))/(x))

Evaluate the following limits: lim_(xrarr0)((e^(2+x)-e^(2))/(x))

MTG-WBJEE-LIMITS AND CONTINUITY-WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE)
  1. The function f(x)=(tan{pi[x-(pi)/(2)]})/(2+[x]^(2)), where [x] denotes...

    Text Solution

    |

  2. LEt f(x) be a differentiable function and f'(4)=5. Then, lim(x->2)(f(4...

    Text Solution

    |

  3. If lim(xrarr0)(2a sin x-sin 2x)/(tan^(3)x) exists and is equal to 1, t...

    Text Solution

    |

  4. Let [x] denote the greatest integer less than or equal to x for any re...

    Text Solution

    |

  5. If lim(xrarr0)(axe^(x)-b log(1+x))/(x^(2))=3, then the value of a and ...

    Text Solution

    |

  6. Let f : R -> R be defined as f(x)={0, x is irrational sin|x|, x is ...

    Text Solution

    |

  7. Let x(n)=(1-(1)/(3))^(2)(1-(1)/(6))^(2)(1-(1)/(10))^(2)…(1-(1)/((n(n+1...

    Text Solution

    |

  8. Let [x] denote the greatest integer less than or equal to x. Then the ...

    Text Solution

    |

  9. Let f:[-2, 2]rarrR be a continuous function such that f(x) assumes onl...

    Text Solution

    |

  10. lim(x rarr 1)((1+x)/(2+x))^((1-sqrt(x))/(1-x))

    Text Solution

    |

  11. the value of lim(n->oo) {sqrt(n+1)+sqrt(n+2)+...........+sqrt(2n-1)}/n...

    Text Solution

    |

  12. If f''(x)=k,k != 0 , then the value of lim(x->0)(2f(x)-3f(2x)+f(4x))...

    Text Solution

    |

  13. lim(xrarr0)(sinx)^(2tanx)

    Text Solution

    |

  14. The value of lim(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)] is

    Text Solution

    |

  15. f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7, then is the value of lim(...

    Text Solution

    |

  16. Let f:[a, b] rarrR be such that f is differentiable in (a, b), f is co...

    Text Solution

    |

  17. lim(xrarr0^(+))(x^(n)lnx), n gt0

    Text Solution

    |

  18. lim(n->oo) 3/n[1+sqrt(n/(n+3)) + sqrt(n/(n+6)) + sqrt(n/(n+9)) +.........

    Text Solution

    |

  19. The limit of the interior angle of a regular polygon of n sides as n r...

    Text Solution

    |

  20. lim(xrarr0^(+))(e^(x)+x)^((1//x))

    Text Solution

    |