Home
Class 12
MATHS
The given expression f(x)=(1)/(tanx+cotx...

The given expression `f(x)=(1)/(tanx+cotx+secx+"cosec x")` is equivalent to

A

`(1)/(2(sinx+cosx-1))`

B

`(sinx+cosx-1)/(2)`

C

`(1)/(2(sinx-cosx+1))`

D

`(sinx-cosx+1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( f(x) = \frac{1}{\tan x + \cot x + \sec x + \csc x} \), we will convert all trigonometric functions into sine and cosine and simplify the expression step by step. ### Step 1: Rewrite the trigonometric functions in terms of sine and cosine We start by rewriting each term in the denominator: - \( \tan x = \frac{\sin x}{\cos x} \) - \( \cot x = \frac{\cos x}{\sin x} \) - \( \sec x = \frac{1}{\cos x} \) - \( \csc x = \frac{1}{\sin x} \) Thus, we can rewrite the expression as: \[ f(x) = \frac{1}{\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} + \frac{1}{\cos x} + \frac{1}{\sin x}} \] ### Step 2: Find a common denominator The common denominator for the terms in the denominator is \( \sin x \cos x \). We can rewrite each term: \[ \frac{\sin x}{\cos x} = \frac{\sin^2 x}{\sin x \cos x}, \quad \frac{\cos x}{\sin x} = \frac{\cos^2 x}{\sin x \cos x}, \quad \frac{1}{\cos x} = \frac{\sin x}{\sin x \cos x}, \quad \frac{1}{\sin x} = \frac{\cos x}{\sin x \cos x} \] Combining these, we have: \[ f(x) = \frac{1}{\frac{\sin^2 x + \cos^2 x + \sin x + \cos x}{\sin x \cos x}} \] ### Step 3: Simplify the denominator Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \), we can simplify the denominator: \[ f(x) = \frac{\sin x \cos x}{1 + \sin x + \cos x} \] ### Step 4: Final expression Thus, the equivalent expression for \( f(x) \) is: \[ f(x) = \frac{\sin x \cos x}{1 + \sin x + \cos x} \] ### Summary of Steps: 1. Rewrite trigonometric functions in terms of sine and cosine. 2. Find a common denominator for the terms in the denominator. 3. Simplify using the Pythagorean identity.
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

int(1)/(tanx+cotx+secx+"cosec "x)dx is equal to

int(dx)/(tanx+cotx+secx+cos e c x)=

(tanx + secx) (cotx + cosecx)

cotx+tanx=2"cosec "x

int(secx."cosec"x)/(2cotx-secx"cosec x")dx di equal to

lim_(x to 0){(1+tanx)/(1+sinx)}^("cosec x") is equal to

int cotx cosec^2x dx

Integration of trigonometric expression (tanx; cotx; secx; cosecx)