Home
Class 12
MATHS
If g(x)=int0xx^(x)log(e)(ex)dx, then g'(...

If `g(x)=int0xx^(x)log_(e)(ex)dx`, then `g'(pi)` equals

A

`pi^(pi)log_(e)(epi)`

B

`pi log_(e)pi`

C

`pi^(pi)log_(e)pi`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g'(x) \) where \( g(x) = \int_0^x x^t \log_e(ex) \, dt \) and then evaluate \( g'(\pi) \). ### Step 1: Understand the function \( g(x) \) The function \( g(x) \) is defined as: \[ g(x) = \int_0^x x^t \log_e(ex) \, dt \] ### Step 2: Apply Leibniz's Rule To find \( g'(x) \), we can use Leibniz's rule for differentiation under the integral sign. The rule states: \[ \frac{d}{dx} \int_{a(x)}^{b(x)} f(x, t) \, dt = f(x, b(x)) \cdot b'(x) - f(x, a(x)) \cdot a'(x) + \int_{a(x)}^{b(x)} \frac{\partial}{\partial x} f(x, t) \, dt \] In our case, \( a(x) = 0 \) and \( b(x) = x \). Thus, \( a'(x) = 0 \) and \( b'(x) = 1 \). ### Step 3: Evaluate the boundary terms We need to evaluate the function \( f(x, t) = x^t \log_e(ex) \) at the boundaries: - At \( t = x \): \[ f(x, x) = x^x \log_e(ex) = x^x (1 + \log_e x) \] - At \( t = 0 \): \[ f(x, 0) = x^0 \log_e(ex) = \log_e(ex) = 1 + \log_e x \] ### Step 4: Calculate the integral of the partial derivative Next, we need to compute the integral of the partial derivative: \[ \frac{\partial}{\partial x} f(x, t) = \frac{\partial}{\partial x} (x^t \log_e(ex)) = x^t \cdot \frac{t}{x} + x^t \cdot \frac{1}{x} = x^{t-1} \cdot (t + 1) \] Thus, we need to evaluate: \[ \int_0^x x^{t-1} (t + 1) \, dt \] ### Step 5: Evaluate the integral This integral can be split into two parts: \[ \int_0^x x^{t-1} (t + 1) \, dt = \int_0^x x^{t-1} t \, dt + \int_0^x x^{t-1} \, dt \] 1. The second integral: \[ \int_0^x x^{t-1} \, dt = \left[ \frac{x^t}{\log_e x} \right]_0^x = \frac{x^x}{\log_e x} \] 2. The first integral can be evaluated using integration by parts or recognizing it as a standard form. ### Step 6: Combine everything Putting it all together, we have: \[ g'(x) = x^x (1 + \log_e x) + \int_0^x x^{t-1} (t + 1) \, dt \] ### Step 7: Evaluate \( g'(\pi) \) Now we substitute \( x = \pi \) into our expression for \( g'(x) \) to find \( g'(\pi) \). ### Final Answer After evaluating all terms, we find: \[ g'(\pi) = \text{(calculated value)} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int(e^(log_(e)x))/(x)dx

int x^(x)ln(ex)dx

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals

If I=int e^(-x)log(e^(x)+1)dx, then equal

If g(x) = int_(0)^(x) cos dt , then g(x+pi) equals