Home
Class 12
MATHS
x(dy)/(dx)=y(logy-logx+1)...

`x(dy)/(dx)=y(logy-logx+1)`

A

`xlog""(y)/(x)=cy`

B

`ylog((x)/(y))=cx`

C

`log((x)/(y))=cy`

D

`log((y)/(x))=cx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If x(dy)/(dx)=y(log y -logx+1), then the solution of the equation is

x(dy)/(dx)=y(logy-logx), where y=vx

Solve the differential equation x*(dy)/(dx)-y=logx .

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

Solve: xlogx(dy)/(dx)+y=2logx

"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))