Home
Class 12
MATHS
Let f (x)= int (x^(2))^(x ^(3))(dt)/(ln...

Let `f (x)= int _(x^(2))^(x ^(3))(dt)/(ln t) ` for `x gt 1 and g (x) = int _(1) ^(x) (2t ^(2) -lnt ) f(t) dt(x gt 1),` then:

A

f(x) is an increasing function

B

f(x) has a minima at x = 1

C

f(x) is a decreasing function

D

f(x) has a maxima at x = 1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int_(x^(2))^(x^(3)) for x>1 and g(x)=int_(1)^(x)(2t^(2)-Int)f(t)dt(x<1) then

f (x) = int _(0) ^(x) e ^(t ^(3)) (t ^(2) -1) (t+1) ^(2011) dt (x gt 0) then :

If F(x) =int_(x^(2))^(x^(3)) log t dt (x gt 0) , then F'(x) equals

Find the derivative with respect to x of the following functions : (a) F(x) = int_(x^(2))^(x^(3)) "In t dt " (x gt 0) (b) f(x) = int_(1//x)^(sqrt(x)) cos (t^(2)) dt (x gt 0)

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let F(x)=int_(0)^(x)(t-1)(t-2)^(2)dt