Home
Class 12
MATHS
If alpha, beta are the roots of x^(2)-ax...

If `alpha, beta` are the roots of `x^(2)-ax+b=0`, then `lim_(xrarralpha)(e^(x^(2)-ax+b))/(x-alpha)=`

A

`beta-alpha`

B

`alpha-beta`

C

1

D

`2alpha-a`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given in the question, we start with the expression: \[ \lim_{x \to \alpha} \frac{e^{x^2 - ax + b}}{x - \alpha} \] ### Step 1: Substitute the expression for \(x^2 - ax + b\) Since \(\alpha\) is a root of the quadratic equation \(x^2 - ax + b = 0\), we know that: \[ \alpha^2 - a\alpha + b = 0 \] This implies that: \[ x^2 - ax + b = (x - \alpha)(x - \beta) \] Thus, we can rewrite the limit as: \[ \lim_{x \to \alpha} \frac{e^{(x - \alpha)(x - \beta)}}{x - \alpha} \] ### Step 2: Evaluate the limit As \(x\) approaches \(\alpha\), the expression \((x - \alpha)(x - \beta)\) approaches \(0\). Therefore, we can rewrite the limit: \[ \lim_{x \to \alpha} \frac{e^{(x - \alpha)(x - \beta)}}{x - \alpha} \] This results in an indeterminate form of \(\frac{0}{0}\). To resolve this, we can apply L'Hôpital's Rule. ### Step 3: Apply L'Hôpital's Rule We differentiate the numerator and the denominator: - The derivative of the numerator \(e^{(x - \alpha)(x - \beta)}\) using the chain rule is: \[ e^{(x - \alpha)(x - \beta)} \cdot \frac{d}{dx}((x - \alpha)(x - \beta)) = e^{(x - \alpha)(x - \beta)} \cdot ((x - \beta) + (x - \alpha)) \] - The derivative of the denominator \(x - \alpha\) is simply \(1\). Thus, we have: \[ \lim_{x \to \alpha} e^{(x - \alpha)(x - \beta)} \cdot ((x - \beta) + (x - \alpha)) \] ### Step 4: Evaluate the limit again Now substituting \(x = \alpha\): \[ = e^{0} \cdot ((\alpha - \beta) + 0) = 1 \cdot (\alpha - \beta) = \alpha - \beta \] ### Final Result Thus, the limit evaluates to: \[ \lim_{x \to \alpha} \frac{e^{x^2 - ax + b}}{x - \alpha} = \alpha - \beta \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

Let alpha be the repeated root of px^(2)+qx+r=0 , then lim_(xrarralpha)(sin(px^(2)+qx+r))/((x-alpha)^(2)) equals

If alpha is a repeated root of ax^2+bx +c=0 , then lim_(xrarralpha)(sin(ax^2+bc+c))/(x-alpha)^2 is equal to

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

If alpha,beta are the roots of the equation ax^2+bx+c=0 , then lim_(xrarralpha)(ax^2+bx+c+1)^(1//x-alpha) is equal to

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=

If alpha is repeated roots of ax^(alpha)+bx+c=0 then lim_(x rarr a)(tan(ax^(2)+bx+c))/((x-alpha)^(2)) is