Home
Class 12
MATHS
If f (x)= {{:((sin {cos x})/(x- (pi)/(2)...

If `f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)/(2)):},` where {k} represents the fractional park of k, then:

A

f(x) is continuous at `x=pi//2`

B

`lim_(xrarrpi//2)f(x)` exists, but f is not continuous at `x=pi//2`

C

`lim_(xrarrpi//2)f(x)` does not exist

D

`lim_(xrarrpi//2)f(x)=-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If {(sin{cos x})/(x-(pi)/(2)),x!=(pi)/(2) and 1,x=(pi)/(2) where {.} represents the fractional part function,then f(x) is

f (x) = {(cos x) / ((pi) / (2) -x), x! = (pi) / (2) 1, x = (pi) / (2)

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

f(x)={((5^(cosx)-1)/((pi)/(2)-x)",", x ne (pi)/(2)), (log 5"," , x =(pi)/(2)):} at x =(pi)/(2) is

If f(x) = {{:((k cos x)/(pi - 2x), x ne pi//2),(1, x = pi//2):} , is a continous function at x = pi//2 , then the value of k is-

f(x),={(k cos x)/(pi-2x),quad if x!=(pi)/(2) and 3,quad if x=(pi)/(2) at x,=(pi)/(2)

If f(x)={:{((cot x-cos x)/((pi-2x)^(3))", for " x != (pi)/(2)),(k ", for " x = pi/2):} is continuous at x= pi/2 , where , then k=

Let f(x) = {{:(((pi)/(2)-sin^(-1)(1-{x}^(2)).sin^(-1)(1-{x}))/(sqrt(2) ({x}+{x}^(3)))",",x ne 0):} , where {.} is fractional part of x, then