Home
Class 12
MATHS
f(x)={(3[x]-(5|x|)/(x)",",xne0),(2",",x=...

`f(x)={(3[x]-(5|x|)/(x)",",xne0),(2",",x=0):}`. Then `int_(-3//2)^(2)f(x)dx=`
(`[*]` )

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\frac{3}{2}}^{2} f(x) \, dx \) where \[ f(x) = \begin{cases} 3[x] - \frac{5|x|}{x} & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases} \] we will break the integral into pieces based on the behavior of the function \( f(x) \) in different intervals. ### Step 1: Identify the intervals and the function values 1. **Interval \( \left[-\frac{3}{2}, -1\right) \)**: - Here, \( [x] = -2 \) (greatest integer function). - Thus, \( f(x) = 3(-2) - \frac{5(-x)}{x} = -6 + 5 = -1 \). 2. **Interval \( [-1, 0) \)**: - Here, \( [x] = -1 \). - Thus, \( f(x) = 3(-1) - \frac{5(-x)}{x} = -3 + 5 = 2 \). 3. **Interval \( (0, 1) \)**: - Here, \( [x] = 0 \). - Thus, \( f(x) = 3(0) - \frac{5x}{x} = -5 \). 4. **Interval \( [1, 2] \)**: - Here, \( [x] = 1 \). - Thus, \( f(x) = 3(1) - \frac{5x}{x} = 3 - 5 = -2 \). ### Step 2: Set up the integral Now we can express the integral as the sum of integrals over these intervals: \[ \int_{-\frac{3}{2}}^{2} f(x) \, dx = \int_{-\frac{3}{2}}^{-1} f(x) \, dx + \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx + \int_{1}^{2} f(x) \, dx \] ### Step 3: Calculate each integral 1. **For \( \int_{-\frac{3}{2}}^{-1} f(x) \, dx \)**: \[ = \int_{-\frac{3}{2}}^{-1} (-1) \, dx = -1 \cdot \left( -1 + \frac{3}{2} \right) = -1 \cdot \left( \frac{1}{2} \right) = -\frac{1}{2} \] 2. **For \( \int_{-1}^{0} f(x) \, dx \)**: \[ = \int_{-1}^{0} 2 \, dx = 2 \cdot (0 - (-1)) = 2 \cdot 1 = 2 \] 3. **For \( \int_{0}^{1} f(x) \, dx \)**: \[ = \int_{0}^{1} (-5) \, dx = -5 \cdot (1 - 0) = -5 \] 4. **For \( \int_{1}^{2} f(x) \, dx \)**: \[ = \int_{1}^{2} (-2) \, dx = -2 \cdot (2 - 1) = -2 \] ### Step 4: Combine the results Now, we combine all the results from the integrals: \[ \int_{-\frac{3}{2}}^{2} f(x) \, dx = -\frac{1}{2} + 2 - 5 - 2 \] Calculating this gives: \[ = -\frac{1}{2} + 2 - 5 - 2 = -\frac{1}{2} + 0 - 5 = -\frac{1}{2} - 5 = -\frac{1}{2} - \frac{10}{2} = -\frac{11}{2} \] Thus, the final answer is: \[ \int_{-\frac{3}{2}}^{2} f(x) \, dx = -\frac{11}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim_(xrarr0)f(x).

f(x)={((2-Sin(1/x))absx,,xne0),(0,,x=0):}

If f(x)={(xsin,((1)/(x)),xne0),(0,,x=0):} Then, lim_(xrarr0) f(x)

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

Let f(x)={{:((|x|)/(x)",",xne0),(2",",x=0.):} Show that lim_(xrarr0)f(x) does not exist.

If f(x)={{:((x-|x|)/(x)","xne0),(2", "x=0):}, show that lim_(xto0) f(x) does not exist.