Home
Class 12
MATHS
The value of |veca xx hati|^2+|veca xx h...

The value of `|veca xx hati|^2+|veca xx hatj|^2+|veca xx hatk|^2` is

A

`|veca|^(2)`

B

`3|veca|^(2)`

C

`4|veca|^(2)`

D

`2|veca|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

If veca=2hati+hatj+2hatk then the value of |hati xx(veca xxhati)|^2+|hatj xx(veca xx hatj)|^2+|hatk xx(veca xx hatk)|^2 is

If hati , hatj , hatk are units vectors and |veca| = a , then the value of | hati xx |veca|"|"^2 + |hatj xx |veca|"|"^2 +| hatk xx |veca|"|"^2 is :

For any vectors veca and vecb, (veca xx hati) + (vecb xx hati) + ( veca xx hatj) . (vecb xx hatj) + (veca xx hatk ) .(vecb xx hatk) is always equal to

If veca=hati+hatj+2htk, bec=hati+2hatj+2hatk and |vecc|=1, then the maximum value of [veca xx vecb vecb xx vecc vecc xx veca] is equal to

if veca=hati+hatj+2hatk, vecb=hati+2hatj+2hatk and |vecc|=1 Such that [veca xx vecb vecb xx vecc vecc xx veca] has maximum value, then the value of |(veca xx vecb) xx vecc|^(2) is

If veca=2hati + hatj + hatk,vecb=hati + 2hatj + 2hatk ,vecc= hati + hatj + 2hatk and [vecavecbveci] hati+ [vecavecb vecj] hatj+ [veca vecb hatk] k is equal to

Lines vecr xx vecb = veca xx vecb and vecr xx veca = vecb xx veca , where veca =hati + hatj, vecb = 2hati -hatk intersect at