Home
Class 12
MATHS
The value of ((cos alpha+cos beta)/(sin ...

The value of `((cos alpha+cos beta)/(sin alpha-sin beta))^(n)+((sin alpha+sin beta)/(cos alpha-cos beta))^(n)` (where n is a whole number) is equal to

A

0, when n is odd

B

`2tan^(n)(alpha-beta)/(2), AA n`

C

`2cot^(n)""(alpha-beta)/(2)`, when n is even

D

`2cot^(n)""(alpha+beta)/(2)`, when n is even

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left(\frac{\cos \alpha + \cos \beta}{\sin \alpha - \sin \beta}\right)^{n} + \left(\frac{\sin \alpha + \sin \beta}{\cos \alpha - \cos \beta}\right)^{n} \] where \( n \) is a whole number, we will simplify each term step by step. ### Step 1: Simplify the first term Using the trigonometric identities, we can rewrite \(\cos \alpha + \cos \beta\) and \(\sin \alpha - \sin \beta\): \[ \cos \alpha + \cos \beta = 2 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] \[ \sin \alpha - \sin \beta = 2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] Thus, we can rewrite the first term: \[ \frac{\cos \alpha + \cos \beta}{\sin \alpha - \sin \beta} = \frac{2 \cos\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)}{2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)} \] Cancelling \(2 \cos\left(\frac{\alpha - \beta}{2}\right)\) (assuming \(\cos\left(\frac{\alpha - \beta}{2}\right) \neq 0\)), we get: \[ = \frac{\cos\left(\frac{\alpha + \beta}{2}\right)}{\sin\left(\frac{\alpha + \beta}{2}\right)} = \cot\left(\frac{\alpha + \beta}{2}\right) \] ### Step 2: Simplify the second term Now, for the second term: \[ \sin \alpha + \sin \beta = 2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right) \] \[ \cos \alpha - \cos \beta = -2 \sin\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right) \] Thus, we can rewrite the second term: \[ \frac{\sin \alpha + \sin \beta}{\cos \alpha - \cos \beta} = \frac{2 \sin\left(\frac{\alpha + \beta}{2}\right) \cos\left(\frac{\alpha - \beta}{2}\right)}{-2 \sin\left(\frac{\alpha + \beta}{2}\right) \sin\left(\frac{\alpha - \beta}{2}\right)} \] Cancelling \(2 \sin\left(\frac{\alpha + \beta}{2}\right)\) (assuming \(\sin\left(\frac{\alpha + \beta}{2}\right) \neq 0\)), we get: \[ = -\cot\left(\frac{\alpha - \beta}{2}\right) \] ### Step 3: Combine the terms Now, we can combine the two simplified terms: \[ \left(\cot\left(\frac{\alpha + \beta}{2}\right)\right)^{n} + \left(-\cot\left(\frac{\alpha - \beta}{2}\right)\right)^{n} \] ### Step 4: Analyze based on the parity of \( n \) 1. **If \( n \) is odd**: \[ (-\cot\left(\frac{\alpha - \beta}{2}\right))^{n} = -\cot\left(\frac{\alpha - \beta}{2}\right)^{n} \] Thus, the expression becomes: \[ \cot\left(\frac{\alpha + \beta}{2}\right)^{n} - \cot\left(\frac{\alpha - \beta}{2}\right)^{n} = 0 \] 2. **If \( n \) is even**: \[ (-\cot\left(\frac{\alpha - \beta}{2}\right))^{n} = \cot\left(\frac{\alpha - \beta}{2}\right)^{n} \] Thus, the expression becomes: \[ \cot\left(\frac{\alpha + \beta}{2}\right)^{n} + \cot\left(\frac{\alpha - \beta}{2}\right)^{n} = 2 \cot\left(\frac{\alpha - \beta}{2}\right)^{n} \] ### Final Result - If \( n \) is odd, the value is \( 0 \). - If \( n \) is even, the value is \( 2 \cot\left(\frac{\alpha - \beta}{2}\right)^{n} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

The value of ((cos alpha + cos beta)/(sin alpha - sin beta))^(n) + ((sin alpha + sin beta)/(cos alpha - cos beta))^(n) (where n is a even number ) is equal to-

(cos alpha + cos beta)/( sin alpha - sin beta) + (sin alpha + sin beta)/( cos alpha - cos beta ) =

The value of sin^2 alpha cos^2 beta + cos^2 alpha sin^2 beta + sin^2 alpha sin^2 beta +cos^2 alpha cos^2 beta is

If sin alpha+sin beta=a and cos alpha-cos beta=b then

If cos alpha+cos beta=0=sin alpha+sin beta then cos2 alpha+cos2 beta=

(cos alpha-cos beta) / (sin beta-sin alpha) = tan ((alpha + beta) / (2))

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

(cos alpha + cos beta) ^ (2) + (sin alpha + sin beta) ^ (2) =