Home
Class 12
MATHS
Let f (n) = |{:(n,,n+1,,n+2),(.^(n)P(n)...

Let `f (n) = |{:(n,,n+1,,n+2),(.^(n)P_(n),,.^(n+1)P_(n+1),,.^(n+2)P_(n+2)),(.^(n)C_(n),,.^(n+1)C_(n+1),,.^(n+2)C_(n+2)):}|` where the sysmbols have their usual neanings .then f(n) is divisible by

A

`n^(2)+n+1`

B

`(n+1)!`

C

`n!`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A, C
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

Let f (n) = |{:(n,,n+1,,n+1),(.^(n)P_(n),,.^(n+1)P_(n+1),,.^(n+2)P_(n+2)),(.^(n)C_(n),,.^(n+1)C_(n+1),,.^(n+2)C_(n+2)):}| where the sysmbols have their usual neanings .then f(n) is divisible by

If .^(n)P_(r)=.^(n)P_(r+1) and .^(n)C_(r)=.^(n)C_(r-1) , find n and r.

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-2)C_(n)+^(n)C_(2)^(2n-4)C_(n)-...=2^(n)

Find .^(n)C_(1)-(1)/(2).^(n)C_(2)+(1)/(3).^(n)C_(3)- . . . +(-1)^(n-1)(1)/(n).^(n)C_(n)

If ^(2n+1)P_(n-1):^(2n-1)P_(n)=3:5, find n

The value of (n+2).^(n)C_(0).2^(n+1)-(n+1).^(n)C_(1).2^(n)+(n).^(n)C_(2).2^(n-1)-….." to " (n+1) terms is equal to

The value of ""^(n)C_(n)+""^(n+1)C_(n)+""^(n+2)C_(n)+….+""^(n+k)C_(n) :

(.^(n)C_(1))/(2)-(2(.^(n)C_(2)))/(3)+(3(.^(n)C_(3)))/(4)-....+(-1)^(n+1)(n(.^(n)C_(n)))/(n+1)=