Home
Class 12
MATHS
Point R divides line joining A(-5, 1) an...

Point R divides line joining `A(-5, 1)` and `B(3, 5)` in the ratio `lambda:1`. The co - ordinates of P and Q are (1, 5) and (7, 2) respectively. If the area of the triangle PQR be 2 sq. units, then the value of `lambda` is

A

`(19)/(5)`

B

`(31)/(9)`

C

23

D

19

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) such that the area of triangle \( PQR \) is 2 square units, where point \( R \) divides the line segment joining points \( A(-5, 1) \) and \( B(3, 5) \) in the ratio \( \lambda:1 \). ### Step 1: Find the coordinates of point R using the section formula. The coordinates of point \( R \) that divides the line segment \( AB \) in the ratio \( \lambda:1 \) can be calculated using the section formula: \[ R\left( \frac{\lambda x_2 + x_1}{\lambda + 1}, \frac{\lambda y_2 + y_1}{\lambda + 1} \right) \] Here, \( A(-5, 1) \) and \( B(3, 5) \) give us \( x_1 = -5, y_1 = 1, x_2 = 3, y_2 = 5 \). Thus, the coordinates of \( R \) are: \[ R\left( \frac{\lambda \cdot 3 + (-5)}{\lambda + 1}, \frac{\lambda \cdot 5 + 1}{\lambda + 1} \right) \] ### Step 2: Substitute the coordinates of points P and Q. The coordinates of points \( P \) and \( Q \) are given as \( P(1, 5) \) and \( Q(7, 2) \). ### Step 3: Use the formula for the area of triangle PQR. The area \( A \) of triangle \( PQR \) can be calculated using the formula: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] Substituting \( P(1, 5) \), \( Q(7, 2) \), and \( R\left( \frac{3\lambda - 5}{\lambda + 1}, \frac{5\lambda + 1}{\lambda + 1} \right) \): \[ \text{Area} = \frac{1}{2} \left| 1(2 - \frac{5\lambda + 1}{\lambda + 1}) + 7\left(\frac{5\lambda + 1}{\lambda + 1} - 5\right) + \frac{3\lambda - 5}{\lambda + 1}(5 - 2) \right| \] ### Step 4: Simplify the expression. 1. Calculate each term: - First term: \[ 1 \left( 2 - \frac{5\lambda + 1}{\lambda + 1} \right) = 2 - \frac{5\lambda + 1}{\lambda + 1} = \frac{2(\lambda + 1) - (5\lambda + 1)}{\lambda + 1} = \frac{2\lambda + 2 - 5\lambda - 1}{\lambda + 1} = \frac{-3\lambda + 1}{\lambda + 1} \] - Second term: \[ 7\left(\frac{5\lambda + 1}{\lambda + 1} - 5\right) = 7\left(\frac{5\lambda + 1 - 5(\lambda + 1)}{\lambda + 1}\right) = 7\left(\frac{5\lambda + 1 - 5\lambda - 5}{\lambda + 1}\right) = 7\left(\frac{-4}{\lambda + 1}\right) = \frac{-28}{\lambda + 1} \] - Third term: \[ \frac{3\lambda - 5}{\lambda + 1}(5 - 2) = \frac{3\lambda - 5}{\lambda + 1} \cdot 3 = \frac{9\lambda - 15}{\lambda + 1} \] 2. Combine all terms: \[ \text{Area} = \frac{1}{2} \left| \frac{-3\lambda + 1 - 28 + 9\lambda - 15}{\lambda + 1} \right| = \frac{1}{2} \left| \frac{6\lambda - 42}{\lambda + 1} \right| \] ### Step 5: Set the area equal to 2 and solve for \( \lambda \). Setting the area equal to 2: \[ \frac{1}{2} \left| \frac{6\lambda - 42}{\lambda + 1} \right| = 2 \] Multiplying both sides by 2: \[ \left| \frac{6\lambda - 42}{\lambda + 1} \right| = 4 \] This gives us two equations to solve: 1. \( \frac{6\lambda - 42}{\lambda + 1} = 4 \) 2. \( \frac{6\lambda - 42}{\lambda + 1} = -4 \) ### Step 6: Solve each equation. **For the first equation:** \[ 6\lambda - 42 = 4(\lambda + 1) \] \[ 6\lambda - 42 = 4\lambda + 4 \] \[ 2\lambda = 46 \implies \lambda = 23 \] **For the second equation:** \[ 6\lambda - 42 = -4(\lambda + 1) \] \[ 6\lambda - 42 = -4\lambda - 4 \] \[ 10\lambda = 38 \implies \lambda = \frac{19}{5} \] ### Final Answer The possible values of \( \lambda \) are \( 23 \) and \( \frac{19}{5} \).
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

A point (-4,1) divides the line joining A(2,-2) and B(x,y) in the ratio 3:5. Then point B is

If x-axis divides the line joining (3,4) and (5,6) in the ratio lambda:1 then lambda is

The plane XOZ divides the join of (1,-1,5) and (2,3,4) in the ratio lambda:1 then lambda is

Point P is mid-point of the line segment AB. The co-ordinates of P and B are (3,1) and (5,-4) respectively. Find the co-ordinates of A

The point dividing the line joining the points (1,2,3) and (3,-5,6) in the ratio 3:-5 is

When (0,0) shifted to (3,-3) the co- ordinates of P,Q,R are (5,5),(-2,4) and (7,-7) in the new system are A,B,C then area of triangle ABC in sq units is

The line segment joining the points (3, -4) and (1, 2) is trisected at the points P and Q. If the co-ordinates of P and Q are (p,-2) and ((5)/(3), q) respectively, find the values of p and q.

If the co - ordinate of the triangle P(4,3) Q (7,-1) and R (9,3) is then find the Area of triangle PQR and also find the types of triangle ?

If the point P (-1,2) divides the line segment joining A (2,5) and B in the ratio 3 : 4 , find the co-ordinate of B .