Home
Class 12
MATHS
If A=int(0)^(pi)(sinx)/(sinx+cosx)dx, B=...

If `A=int_(0)^(pi)(sinx)/(sinx+cosx)dx, B=int_(0)^(pi)(sinx)/(sinx-cosx)dx`, then

A

`A+B=0`

B

`A=B`

C

`A=B=pi//2`

D

`A=-B=pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integrals \( A \) and \( B \) given by: \[ A = \int_0^{\pi} \frac{\sin x}{\sin x + \cos x} \, dx \] \[ B = \int_0^{\pi} \frac{\sin x}{\sin x - \cos x} \, dx \] ### Step 1: Evaluate \( A \) We start with the integral \( A \): \[ A = \int_0^{\pi} \frac{\sin x}{\sin x + \cos x} \, dx \] Using the property of definite integrals, we can change the variable by letting \( x = \pi - t \). Then \( dx = -dt \), and the limits change from \( 0 \) to \( \pi \) to \( \pi \) to \( 0 \): \[ A = \int_{\pi}^{0} \frac{\sin(\pi - t)}{\sin(\pi - t) + \cos(\pi - t)} (-dt) = \int_0^{\pi} \frac{\sin t}{\sin t - \cos t} \, dt \] ### Step 2: Evaluate \( B \) Now, we have: \[ B = \int_0^{\pi} \frac{\sin x}{\sin x - \cos x} \, dx \] ### Step 3: Relate \( A \) and \( B \) From the previous steps, we have: \[ A = \int_0^{\pi} \frac{\sin x}{\sin x + \cos x} \, dx \] \[ B = \int_0^{\pi} \frac{\sin x}{\sin x - \cos x} \, dx \] Now, we can see that: \[ A + B = \int_0^{\pi} \left( \frac{\sin x}{\sin x + \cos x} + \frac{\sin x}{\sin x - \cos x} \right) dx \] ### Step 4: Combine the fractions Combining the fractions gives: \[ A + B = \int_0^{\pi} \frac{\sin x (\sin x - \cos x) + \sin x (\sin x + \cos x)}{(\sin x + \cos x)(\sin x - \cos x)} \, dx \] This simplifies to: \[ A + B = \int_0^{\pi} \frac{2 \sin^2 x}{\sin^2 x - \cos^2 x} \, dx \] ### Step 5: Simplify further Using the identity \( \sin^2 x - \cos^2 x = -\cos(2x) \): \[ A + B = -2 \int_0^{\pi} \frac{\sin^2 x}{\cos(2x)} \, dx \] ### Step 6: Conclusion From the symmetry and properties of the integrals, we can conclude that: \[ A = B \] Thus, the relation between \( A \) and \( B \) is: \[ A = B \]
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 2

    MTG-WBJEE|Exercise CATEGORY 2 : SINGLE OPTION CORRECT TYPE|15 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos
  • MODEL TEST PAPER 3

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If A=int_(0)^(pi)(sinx)/(sinx+cosx)dx and B=int_(0)^(pi)(sinx)/(sinx-cosx)dx , then

int(sinx)/(sinx-cosx)dx=

int_(0)^(pi//2)(x)/(sinx+cosx)dx .

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

int(dx)/(sinx-cosx)=

int_(0)^(pi)(dx)/((3+2sinx+cosx))

int_(0)^( pi/2)(cosx)/(1+sinx)dx

int(sinx)/((sinx-cosx))dx=?

int_(0)^(pi//2) abs(sinx-cosx) dx=

int_(0)^(pi//2) e^x(sinx+cosx) dx