Home
Class 12
MATHS
Find the shortest distance between the ...

Find the shortest distance between the lines whose vector equations are` -> r=(1-t) hat i+(t-2) hat j+(3-2t) hat k`and ` -> r=(s+1) hat i+(2s-1) hat j-(2s+1) hat k`

Text Solution

AI Generated Solution

To find the shortest distance between the two lines given by their vector equations, we will follow these steps: ### Step 1: Write the vector equations in the standard form The vector equations of the lines are given as: 1. \( \vec{r_1} = (1-t) \hat{i} + (t-2) \hat{j} + (3-2t) \hat{k} \) 2. \( \vec{r_2} = (s+1) \hat{i} + (2s-1) \hat{j} + (-2s-1) \hat{k} \) We can express these in the form \( \vec{r} = \vec{a} + \lambda \vec{b} \). ...
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise MISCELLANEOUS EXERCISE|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|30 Videos
  • RELATIONS AND FUNCTIONS

    NCERT ENGLISH|Exercise EXERCISE 1.3|14 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.5|7 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the following pairs of line whose vector equation are: vec r=(1-t) hat i+(t-2) hat j+(3-t) hat k a n d\ vec r=(s+1) hat i+(2s-1) hat j-(2s+1) hat k

Find the shortest distance between the lines whose vector equations are -> r=( hat i+2 hat j+3 hat k)+lambda( hat i-3 hat j+2 hat k) and -> r=4 hat i+5 hat j+6 hat k+mu(2 hat i+3 hat j+ hat k) .

Find the shortest distance between the lines l1 and l2 whose vector equations are -> r= hat i+ hat j+lambda(2 hat i- hat j+ hat k) (1)and -> r=2 hat i+ hat j-k+mu(3 hat i-5 hat j+2 hat k) (2)

Find the shortest distance between the lines whose vector equations are vec r= hat i+ hat j+lambda(2 hat i- hat j+ hat k) and vec r=2 hat i+ hat j- hat k+mu(3 hat i-5 hat j+2 hat k)dot

Find the shortest distance between the lines whose vector equations are: vec r=2 hat i- hat j- hat k+lambda(2 hat i-5 hat j+2 hat k)a n d\ , vec r= hat i+2 hat j+ hat k+ mu( hat i- hat j+ hat k)dot

Find the shortest distance between the lines l1 and l2 whose vector equations are vecr= hat i+ hat j+lambda(2 hat i- hat j+ hat k) (1)and vecr=2 hat i+ hat j-k+mu(3 hat i-5 hat j+2 hat k) (2)

Find the shortest distance between the following pairs of line whose vector equation are: vec r=( hat i+2 hat j+3 hat k+lambda(2 hat i+3 hat j+4 hat k)a n d\ vec r=(2 hat i+4 hat j+5 hat k)+mu(3 hat i+4 hat j+5 hat k)

Find the shortest distance between the parallel lines whose equation are: vec r=hat i+2 hat j+3 hat k+lambda( hat i- hat j+ hat k)a n d\ vec r=2 hat i- hat j- hat k+mu(- hat i+ hat j- hat k)

Find the shortest distance between the parallel lines whose equation are: vec r= hat i+ hat j+lambda(2 hat i- hat j+ hat k)a n d\ vec r=2 hat i+ hat j- hat k+mu(4 hat i-2 hat j+2 hat k)

Find the shortest distance between the lines vec r=(1-lambda) hat i+(lambda-2) hat j+(3-2lambda) hat k and vec r=(mu+1) hat i+(2mu+1) hat kdot