Home
Class 12
MATHS
(a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)...

`(a-b)/(a)+(1)/(2)((a-b)/(a))^(2)+(1)/(3)((a-b)/a)^(3)+....`=

A

`log_(e )(ab)`

B

`log_(e )a.log_(e )b`

C

`log_(e )(a//b)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - II(A) (CLASS WORK)|40 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - II(B) (HOME WORK)|30 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|167 Videos
  • MATHEMATICAL REASONING

    AAKASH SERIES|Exercise Practice Exercise|21 Videos

Similar Questions

Explore conceptually related problems

If S=((b-1)-(1)/(2)(b-1)^(2)+(1)/(3)(b-1)^(3)-....)/((a-1)-(1)/(2)(a-1)^(2)+(1)/(3)(a-1)^(3)-...), then S =

A = ((1)/(2),(3)/(2)) , B ((3)/(2),(-1)/(2)) then BA = .....

|(1,1,1),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3))|=

If the Point (a^3//(a-1),(a^2-3)//(a-1)),(b^2//(b-1),(b^2-3)//(b-1)), and (c^3//c-1,(c^2-3)/(c-1)) , where a,b,c are different from 1, lie on the line lx+my+n=0 then

If |a| lt 1 and |b| lt 1 , then the sum of the series 1 + (1+a) b + (1 + a + a^(2))b^(2) + (1+ a+ a^(2) + a^(3))b^(3) … is

Match the following from List - I to List - II {:("List-I","List-II"),((I)|{:(1,1,1),(a,b,c),(bc,ca,ab):}|=,(a)(a-b)(b-c)(c-a)),((II)|{:(a,b,c),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3)):}|=,(b)(a-b)(b-c)(c-a)abc),((III)|{:(1,1,1),(a,b,c),(a^(3),b^(3),c^(3)):}|=,(c)(a-b)(b-c)(c-a)(a+b+c)):}

If Delta_(1)=|{:(a_(1)^(2)+b_(1)+c_(1),a_(1)a_(2)|b_(2)|c_(2),a_(1)a_(3)+b_(3)+c_(3)),(b_(1)b_(2)+c_(1),b_(2)^(2)+c_(2),b_(2)b_(3)+c_(3)),(c_(1)c_(3),c_(2)c_(3),c_(3)^(2)):}|" and " Delta_(2)=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}| , then find the value of (Delta_(1))/(Delta_(2)) .