Home
Class 12
MATHS
Evaluatelim(x to a) (sqrt(4a+3x)-sqrt(x+...

Evaluate`lim_(x to a) (sqrt(4a+3x)-sqrt(x+6a))/(sqrt(2a+5x)-sqrt(3a+4x))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to a} \frac{\sqrt{4a + 3x} - \sqrt{x + 6a}}{\sqrt{2a + 5x} - \sqrt{3a + 4x}}, \] we will use the technique of multiplying by the conjugate. ### Step 1: Multiply by the Conjugate We multiply the numerator and denominator by the conjugate of the numerator: \[ \frac{\sqrt{4a + 3x} - \sqrt{x + 6a}}{\sqrt{2a + 5x} - \sqrt{3a + 4x}} \cdot \frac{\sqrt{4a + 3x} + \sqrt{x + 6a}}{\sqrt{4a + 3x} + \sqrt{x + 6a}}. \] This gives us: \[ \frac{(4a + 3x) - (x + 6a)}{(\sqrt{2a + 5x} - \sqrt{3a + 4x})(\sqrt{4a + 3x} + \sqrt{x + 6a})}. \] ### Step 2: Simplify the Numerator Now simplify the numerator: \[ (4a + 3x) - (x + 6a) = 4a + 3x - x - 6a = -2a + 2x = 2(x - a). \] ### Step 3: Rewrite the Limit Now substitute this back into the limit: \[ \lim_{x \to a} \frac{2(x - a)}{(\sqrt{2a + 5x} - \sqrt{3a + 4x})(\sqrt{4a + 3x} + \sqrt{x + 6a})}. \] ### Step 4: Multiply by the Conjugate of the Denominator Next, we multiply the denominator by its conjugate: \[ \frac{\sqrt{2a + 5x} + \sqrt{3a + 4x}}{\sqrt{2a + 5x} + \sqrt{3a + 4x}}. \] This gives us: \[ \frac{2(x - a)(\sqrt{2a + 5x} + \sqrt{3a + 4x})}{(2a + 5x) - (3a + 4x)}. \] ### Step 5: Simplify the Denominator Now simplify the denominator: \[ (2a + 5x) - (3a + 4x) = 2a + 5x - 3a - 4x = -a + x. \] ### Step 6: Rewrite the Limit Again Now we have: \[ \lim_{x \to a} \frac{2(x - a)(\sqrt{2a + 5x} + \sqrt{3a + 4x})}{x - a}. \] ### Step 7: Cancel the Common Factor We can cancel \(x - a\) (since we are taking the limit as \(x\) approaches \(a\), we can safely cancel it): \[ \lim_{x \to a} 2(\sqrt{2a + 5x} + \sqrt{3a + 4x}). \] ### Step 8: Substitute \(x = a\) Now substitute \(x = a\): \[ 2(\sqrt{2a + 5a} + \sqrt{3a + 4a}) = 2(\sqrt{7a} + \sqrt{7a}) = 2(2\sqrt{7a}) = 4\sqrt{7a}. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{4\sqrt{7a}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples (Single Correct Answer)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 1 (Single Correct Answer)|52 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x rarr 0) (sqrt(4+x)-sqrt(4-x))/(sqrt(9+x)-sqrt(9-x)) .

Evaluate: lim_(x rarr a)(sqrt(a+2x)-sqrt(3x))/(sqrt(3a+x)-2sqrt(x)),(a!=0)

lim_(x rarr oo)sqrt(3x)-sqrt(x-5)

Evaluate: lim_(x rarr 0) (sqrt(6+x)-sqrt(6-x))/(sqrt(8+x)-sqrt(8-x)) .

Evaluate : lim_(x to 0) (sqrt(5)-sqrt(4+cosx))/(3sin^(2)x) .

lim_(x rarr1)(13sqrt(x)-7sqrt(x))/(5sqrt(x)-3sqrt(x))

Evaluate: lim_(x to2)(sqrt(x^(3)-x-3)-sqrt(x+1))/(x-2)

lim_(xrarr+1) (sqrt(4+x)-sqrt(5))/(x-1)

Evaluate lim_(x to 0) (sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))