Home
Class 12
MATHS
Let y=-(2^(1/x)-1)/(2^(1/x)+1) , then...

Let `y=-(2^(1/x)-1)/(2^(1/x)+1)` , then

A

`lim_(xto0) y=-1`

B

`lim_(x to 0) y=1`

C

`lim_(xto0+) y=-1`

D

`lim_(x to 0+) y =lim_(x to 0-) y`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limits of the function \( y = -\frac{2^{1/x} - 1}{2^{1/x} + 1} \) as \( x \) approaches 0 from both the left and the right. ### Step-by-Step Solution: 1. **Identify the Function**: We have \( y = -\frac{2^{1/x} - 1}{2^{1/x} + 1} \). 2. **Evaluate the Left-Hand Limit**: We will first find the limit as \( x \) approaches 0 from the left (denoted as \( 0^- \)). \[ \lim_{x \to 0^-} y = \lim_{h \to 0} -\frac{2^{1/(0-h)} - 1}{2^{1/(0-h)} + 1} = \lim_{h \to 0} -\frac{2^{-1/h} - 1}{2^{-1/h} + 1} \] 3. **Analyze \( 2^{-1/h} \)**: As \( h \to 0^- \), \( -1/h \) approaches \( -\infty \), hence \( 2^{-1/h} \) approaches 0. \[ \lim_{h \to 0} -\frac{0 - 1}{0 + 1} = -\frac{-1}{1} = 1 \] Therefore, \[ \lim_{x \to 0^-} y = 1 \] 4. **Evaluate the Right-Hand Limit**: Next, we find the limit as \( x \) approaches 0 from the right (denoted as \( 0^+ \)). \[ \lim_{x \to 0^+} y = \lim_{h \to 0} -\frac{2^{1/(0+h)} - 1}{2^{1/(0+h)} + 1} = \lim_{h \to 0} -\frac{2^{1/h} - 1}{2^{1/h} + 1} \] 5. **Analyze \( 2^{1/h} \)**: As \( h \to 0^+ \), \( 1/h \) approaches \( +\infty \), hence \( 2^{1/h} \) approaches \( +\infty \). \[ \lim_{h \to 0} -\frac{+\infty - 1}{+\infty + 1} = -\frac{\infty}{\infty} = -1 \] Therefore, \[ \lim_{x \to 0^+} y = -1 \] 6. **Conclusion**: Since the left-hand limit \( \lim_{x \to 0^-} y = 1 \) and the right-hand limit \( \lim_{x \to 0^+} y = -1 \) are not equal, we conclude that the limit does not exist as \( x \) approaches 0. ### Final Result: The limit \( \lim_{x \to 0} y \) does not exist.
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 1 (Single Correct Answer)|52 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Previous Years B-Architecture Entrance Examination Paper|12 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let y=(x^(2)+3x+1)/(x^(2)+x+1) then y in R then

If y=(x^(2)+x+1)/(x^(2)-x+1)," then "(x^(2)-x+1)^(2)y_(1)=

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

Let y=f (x) and x/y (dy)/(dx) =(3x ^(2)-y)/(2y-x^(2)),f(1)=1 then the possible value of 1/3 f(3) equals :

If y=log(sqrt(x)+(1)/(sqrt(x)))^(2), then , x(x+1)^(2)y_(2)+(x+1)^(2)y_(1) is

Let y_1=tan^(-1)((sqrt(1+x^2)-1)/x) and y_2=tan^(-1)((2xsqrt(1-x^2))/(1-2x^2)) then (dy_1)/(dy_2)=