Home
Class 12
MATHS
If lim(xto0) (sin 2x+asinx)/x^3=b then t...

If `lim_(xto0) (sin 2x+asinx)/x^3=b` then the value of b-2a is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we need to find the value of \( b - 2a \) where \[ \lim_{x \to 0} \frac{\sin(2x) + a \sin(x)}{x^3} = b. \] ### Step 1: Identify the form of the limit As \( x \to 0 \), both \( \sin(2x) \) and \( \sin(x) \) approach 0. Thus, the limit takes the form \( \frac{0 + 0}{0} \), which is an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if the limit is of the form \( \frac{0}{0} \), we can differentiate the numerator and the denominator: \[ \lim_{x \to 0} \frac{\sin(2x) + a \sin(x)}{x^3} = \lim_{x \to 0} \frac{2\cos(2x) + a\cos(x)}{3x^2}. \] ### Step 3: Evaluate the limit again Substituting \( x = 0 \) into the new limit gives: \[ \frac{2\cos(0) + a\cos(0)}{3(0)^2} = \frac{2 + a}{0}. \] This is still an indeterminate form \( \frac{C}{0} \) (where \( C = 2 + a \)). For the limit to exist, the numerator must also approach 0 as \( x \to 0 \): \[ 2 + a = 0 \implies a = -2. \] ### Step 4: Substitute \( a \) back into the limit Now substituting \( a = -2 \) back into the limit, we have: \[ \lim_{x \to 0} \frac{\sin(2x) - 2\sin(x)}{x^3}. \] ### Step 5: Apply L'Hôpital's Rule again This limit is still \( \frac{0}{0} \), so we apply L'Hôpital's Rule again: \[ \lim_{x \to 0} \frac{2\cos(2x) - 2\cos(x)}{3x^2}. \] ### Step 6: Evaluate the limit again Substituting \( x = 0 \): \[ \frac{2\cos(0) - 2\cos(0)}{3(0)^2} = \frac{2 - 2}{0} = \frac{0}{0}. \] ### Step 7: Apply L'Hôpital's Rule a third time We apply L'Hôpital's Rule again: \[ \lim_{x \to 0} \frac{-4\sin(2x) + 2\sin(x)}{6x}. \] ### Step 8: Evaluate the limit again Substituting \( x = 0 \): \[ \frac{-4\sin(0) + 2\sin(0)}{6(0)} = \frac{0}{0}. \] ### Step 9: Apply L'Hôpital's Rule a fourth time Applying L'Hôpital's Rule one more time: \[ \lim_{x \to 0} \frac{-8\cos(2x) + 2\cos(x)}{6}. \] ### Step 10: Evaluate the limit Substituting \( x = 0 \): \[ \frac{-8\cos(0) + 2\cos(0)}{6} = \frac{-8 + 2}{6} = \frac{-6}{6} = -1. \] ### Step 11: Find \( b \) Thus, we have \( b = -1 \). ### Step 12: Calculate \( b - 2a \) Now substituting \( a = -2 \): \[ b - 2a = -1 - 2(-2) = -1 + 4 = 3. \] ### Final Answer The value of \( b - 2a \) is \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Single Correct Answer)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If lim_(xto0) (p sin2x+(1-cos2x))/(x+tanx)=1 , then the value of p is___________.

If lim_(xto0) (ae^(x)-b)/(x) =2, then find the values of a and b.

If lim_(xrarr0)(sin2x-asinx)/(x^(3)) exists finitely, then the value of a is

Given, lim_(xto0) (sin3x)/(sin7x) .

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

State whether the following statements are True of False. If L=lim_(xto0)(sin2x)/(tan3x) , So the value of L is 1.

If lim_(xto0) ((4x-1)^(1/3)+a+bx)/(x)=1/3 then find the values of a and b.