Home
Class 12
MATHS
Let f(x)=(sqrt2-(cosx+sinx))/(1-sin2x), ...

Let `f(x)=(sqrt2-(cosx+sinx))/(1-sin2x), x ne pi//4`. The value `f(pi//4)` so that f is continuous is `(sqrt2=1.41)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f\left(\frac{\pi}{4}\right) \) such that the function \( f(x) \) is continuous at \( x = \frac{\pi}{4} \), we start with the given function: \[ f(x) = \frac{\sqrt{2} - (\cos x + \sin x)}{1 - \sin 2x}, \quad x \neq \frac{\pi}{4} \] ### Step 1: Check for continuity For \( f(x) \) to be continuous at \( x = \frac{\pi}{4} \), we need: \[ \lim_{x \to \frac{\pi}{4}} f(x) = f\left(\frac{\pi}{4}\right) \] ### Step 2: Evaluate the limit First, we evaluate the limit as \( x \) approaches \( \frac{\pi}{4} \): \[ \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{\sqrt{2} - (\cos x + \sin x)}{1 - \sin 2x} \] ### Step 3: Substitute \( x = \frac{\pi}{4} \) Substituting \( x = \frac{\pi}{4} \): - \( \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \sin\left(\frac{\pi}{2}\right) = 1 \) Thus, we have: \[ \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2} \] And: \[ 1 - \sin\left(2 \cdot \frac{\pi}{4}\right) = 1 - 1 = 0 \] So we get: \[ \lim_{x \to \frac{\pi}{4}} f(x) = \frac{\sqrt{2} - \sqrt{2}}{0} = \frac{0}{0} \] This is an indeterminate form, so we apply L'Hôpital's Rule. ### Step 4: Apply L'Hôpital's Rule Differentiate the numerator and denominator: - The derivative of the numerator \( \sqrt{2} - (\cos x + \sin x) \) is \( \sin x - \cos x \). - The derivative of the denominator \( 1 - \sin 2x \) is \( -2 \cos 2x \). Thus, we have: \[ \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{-2 \cos 2x} \] ### Step 5: Substitute \( x = \frac{\pi}{4} \) again Now substituting \( x = \frac{\pi}{4} \): - \( \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \) - \( \cos\left(\frac{\pi}{2}\right) = 0 \) Thus: \[ \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0 \] So we again have \( 0 \) in the numerator. We apply L'Hôpital's Rule again. ### Step 6: Differentiate again Differentiate again: - The derivative of \( \sin x - \cos x \) is \( \cos x + \sin x \). - The derivative of \( -2 \cos 2x \) is \( 4 \sin 2x \). Thus: \[ \lim_{x \to \frac{\pi}{4}} f(x) = \lim_{x \to \frac{\pi}{4}} \frac{\cos x + \sin x}{4 \sin 2x} \] ### Step 7: Substitute \( x = \frac{\pi}{4} \) again Substituting \( x = \frac{\pi}{4} \): \[ \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \sqrt{2} \] And: \[ 4 \sin\left(\frac{\pi}{2}\right) = 4 \cdot 1 = 4 \] Thus: \[ \lim_{x \to \frac{\pi}{4}} f(x) = \frac{\sqrt{2}}{4} \] ### Step 8: Set \( f\left(\frac{\pi}{4}\right) \) To ensure continuity, we set: \[ f\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{4} \] ### Final Answer Therefore, the value of \( f\left(\frac{\pi}{4}\right) \) such that \( f \) is continuous is: \[ f\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{4} \approx 0.35 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Single Correct Answer)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(cos x -sinx)/(cos 2x)+ sin^2x , x ne pi/4 . The value of f(pi//4) so that f is continuous on (0,pi//2) is (sqrt2=1.41)

If f(x)=(1+sinx-cosx)/(1-sinx-cosx), x ne 0 . The value of f(0) so that f is a continuous function is

Let f(x)=(1-cos x sqrt(cos 2x))/x^2 , x ne 0 The value of f(0) so that f is a continuous function is

If f(x)=tan (pi//4 -x)//cot2x for x ne pi//4 . The value of f(pi//4) so that f is continuous at x=pi//4 is

Consider the function f(x)=(sin 2x)^(tan^(2)2x), x in (pi)/(4) . The value of f((pi)/(4)) such that f is continuous at x=(pi)/(4) is

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is not defined at x=pi . The value of f(pi) so that f(x) is continuous at x=pi is

The function f(x)=(1-sinx+cosx)/(1+sinx+cosx) is nto defined at x=pi . The value of f(pi) so that f(x) is continuous at x=pi is:

The function f(x)=(sin 2x)^(tan^(2)2x) is not defined at x=(pi)/(4) . The value of f(pi//4) , so that f is continuous at x=pi//4 , is