Home
Class 12
MATHS
The value lim(x to tan^(-1) 3) (tan^6 x-...

The value `lim_(x to tan^(-1) 3) (tan^6 x- 2tan^5 x - 3tan^4 x)/(tan^2 x -4 tan x+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \tan^{-1}(3)} \frac{\tan^6 x - 2\tan^5 x - 3\tan^4 x}{\tan^2 x - 4\tan x + 3}, \] we will follow these steps: ### Step 1: Substitute \( t = \tan x \) Since \( x \to \tan^{-1}(3) \), we have \( t \to 3 \). Thus, we can rewrite the limit in terms of \( t \): \[ \lim_{t \to 3} \frac{t^6 - 2t^5 - 3t^4}{t^2 - 4t + 3}. \] ### Step 2: Factor the numerator and denominator First, we will factor the numerator \( t^6 - 2t^5 - 3t^4 \): 1. Factor out \( t^4 \): \[ t^4(t^2 - 2t - 3). \] 2. Now, we need to factor \( t^2 - 2t - 3 \). This can be factored as: \[ (t - 3)(t + 1). \] So, the numerator becomes: \[ t^4(t - 3)(t + 1). \] Next, we factor the denominator \( t^2 - 4t + 3 \): 1. This can be factored as: \[ (t - 3)(t - 1). \] ### Step 3: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{t \to 3} \frac{t^4(t - 3)(t + 1)}{(t - 3)(t - 1)}. \] ### Step 4: Cancel common factors We can cancel the common factor \( (t - 3) \) from the numerator and the denominator: \[ \lim_{t \to 3} \frac{t^4(t + 1)}{t - 1}. \] ### Step 5: Substitute \( t = 3 \) Now, we substitute \( t = 3 \): \[ \frac{3^4(3 + 1)}{3 - 1} = \frac{81 \cdot 4}{2} = \frac{324}{2} = 162. \] ### Final Answer Thus, the value of the limit is \[ \boxed{162}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Single Correct Answer)|10 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Exercise (Level 1 Single Correct Answer)|39 Videos
  • LIMITS AND CONTINUITY

    MCGROW HILL PUBLICATION|Exercise Solved Examples Level 2 (Single Correct Answer)|30 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) (tan x + 4 tan 2x - 3tan 3x)/(x^(2) tan x)

Solve (tan 3x - tan 2x)/(1+tan 3x tan 2x)=1 .

lim_ (x rarr tan ^ (- 1) 3) ([tan ^ (2) x] -2 [tan x] -3) / ([tan ^ (2) x] -4 [tan x] +3) where [*]

tan4x = (4tanx (1-tan^2x))/(1-6tan^2x+tan^4x)

lim_(xrarr0) (tan 4x)/(tan 2x)

lim_ (x rarr (pi) / (2)) (tan x) / (tan5x)