Home
Class 9
MATHS
Factorize a(a-1)-b(b-1)....

Factorize `a(a-1)-b(b-1)`.

Text Solution

Verified by Experts

We have
`a(a-1)-b(b-a) =a^1-a-b^2+b`
`=(a^2-b^2)-(a-b)`
`=(a-b)(a+b)-(a-b)`
`=(a-b){(a+b)-1}`
`=(a-b)(a+b-1)`.
Hence, `a(a-1)-b(b-1)=(a-b)(a+b-1)`.
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3A|34 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Factorize (a+b)^3-a-b

Factorize a-b-a^2+b^2

Factorize : a^(3) + b^(3) + 3ab -1

Factorize: a^(3)+b^(3)+a+b

Factorize :27a^(3)+(1)/(64b^(3))+(27a^(2))/(4b)+(9a)/(16b^(2))

The factors 8(a-2b)^(2)-2a+4b-1= are

factorize : ab(x^2+1)+x(a^2+b^2)

Factors of (a+b)^(3)-(a-b)^(3) are

Prove that (i) (a^(-1))/(a^(-1) + b^(-1)) + (a^(-1))/(a^(-1)-b^(-1)) = (2b^(2))/(b^(2) -a^(2)) (ii) (1)/(1+x^(a-b)) + (1)/(1+x^(b-a)) = 1