Home
Class 9
MATHS
Factorize of the expression: 7sqrt(2)...

Factorize of the expression: `7sqrt(2)\ x^2-10 x-4sqrt(2)`

Text Solution

Verified by Experts

The given expression is ` 7sqrt(2)x^2-10x-4sqrt(2)`.
Here, `7sqrt(2)xx (-4sqrt(2))=-56`.
So, we split -10 into two parts whose sum is -10 and product -56.
Clearly, `(-14+4)=-10 and (-14)xx 4 =-56`
`therefore 7sqrt(2)x^2-10x -4sqrt(2)=7sqrt(2)x^2-14x +4x-4sqrt(2)`
`=7sqrt(2)x(x-sqrt(2))+4(x-sqrt(2))`
`=(x-sqrt(2)) (7sqrt(2)x+4)`.
Hence,` (7sqrt(2)x^2-10x-4sqrt(2))=(x-sqrt2)(7sqrt(2)x+4)`
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3A|34 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

7sqrt(2)x^(2)-10x-4sqrt(2)

Factorize of the expression: 7sqrt(2)x^(2)-10x-4sqrt(2)

Factorize of the expression: 5sqrt(5)x^(2)+30x+8sqrt(5)

sqrt(2)x^(2)+9x+4sqrt(2)

factorize the given expression sqrt(2)x^2+3x+sqrt(2)

factorize the given expression 10x^2-9x-7

Find all the possible the value of the following expression.sqrt(x^(2)-4)( ii) sqrt(9-x^(2))( (iii) sqrt(x^(2)-2x+10)