Home
Class 9
MATHS
Multiply: x^2+4y^2+z^2+2x y+x z-2y z\ b...

Multiply: `x^2+4y^2+z^2+2x y+x z-2y z\ ` by `x-2y-z`

Text Solution

Verified by Experts

Putting `x=a,-2y=b and -z=c`, we get
`(x-2y-z)(x^2+4y^2+z^2+z^2+2xy-2yz+zx)`
`=[x+(-2y)+(-z)]xx[x^2+(-2y)^2+(-z)^2-x xx (-2y)-(-2y)xx(-z)-(-z)xx x]`
`=(a+b+c)xx (a^2+b^2+c^2-ab-bc -ca)`
`=a^3+b^3+c^2-3 abc`
`=x^3+(-2y)^3+(-z)^3 -3 xx x xx (-2y)xx(-z)`
`=x^3-8y^3-z^3-6xyz`.
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3A|34 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Multiply: x^(2)+4y^(2)+z^(2)+2xy+xz-2yz by x-2y-z

Multiply x^(2)+4y^(2)+z^(2)+2xy+xz-2yz by (-z+x-2y)

x-y+z=1 2x+y-z=2 x-2y-z=4

2x+8y+5z=5 x+y+z=-2 x+2y-z=2

What should be added to x y+y z+z x to get x y-y z-z x ? -2x y-2y z-2z x (b) -3x y-y z-z x -3x y-3y z-3z x (d) 2x y+2y z+2z x

x+2y+z=4 -x+y+z=0 x-3y+z=4

8x + y + 2z = 4x + 2y + z = 1x + y + z = 2

Prove the identities: |[z, x, y],[ z^2,x^2,y^2],[z^4,x^4,y^4]|=|[x, y, z],[ x^2,y^2,z^2],[x^4,y^4,z^4]|=|[x^2,y^2,z^2],[x^4,y^4,z^4],[x, y, z]| =x y z (x-y)(y-z)(z-x)(x+y+z)