Home
Class 9
MATHS
Factorise (p-q)^3+(q-r)^3+(r-p)^3....

Factorise `(p-q)^3+(q-r)^3+(r-p)^3`.

Text Solution

Verified by Experts

Putting `(p-q)=x,(q-r)=y and (r-p)=z`, we get
`(p-q)^3+(q-r)^3+(r-p)^3`
`=x^3+y^3+z^3, " where " (x+y+z)=(p-q)+(q-r)+(r-p)=0`
`=3xyz " "[because x+y+z=0 rArr x^3+y^3+z^3=3xyz]`
`=3(p-q)(q-r)(r-p)`.
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3A|34 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Factorise : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Factorize : p^(3)(q-r)^(3)+q^(3)(r-p)^(3)+r^(3)(p-q)^(3)

Add p(p-q),q(q-r) and r(r-p)

If a,b,c denote the sides of triangleABC , show that the value of the expression, a^3 (p-q)(p-r)+b^2(q-r)+b^2(q-r)(q-p)+c^2(r-p)(r-q) cannot be negative where p,q,r in R .

If p+q+r=9 then (3-p)^(3)+(3-q)6(3)+(3-r)^(3) is :

If log_p(q)+log_q(r)+log_r(p) vanishes where p,q,r are positive reals different than unity then the value of (log_p(q))^3+(log_q(r))^3+(log_r(p))^3

The points (p,q +r) , (q, r+p) and (r, q+p) are "_______" .

The lines (p-q)x+(q-r)y+(r-p)=0(q-r)x+(r-p)y+(p-q)=0,(x-p)x+(p-q)y+(q-r)=