Home
Class 9
MATHS
If p=2-a; prove that a^3+6ap+p^3-8=0...

If `p=2-a`; prove that `a^3+6ap+p^3-8=0`

Text Solution

Verified by Experts

We have
`p=2-a`
`rArr a+p-2=0`
`rArr x+y+z=0, " where " a=x,y and (-2)=z`
` rArr x^3+y^3+z^3=3xyz " "[because x+y+z=0 rArr x^3+y^3+z^3=3xyz]`
`rArr a^3+p^3+(-2)^3=3xx a xx pxx (-2)`
`rArr a^23+6ap+p^3-8=0`
Hence, `a^3+6ap+p^3-8=0`.
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3A|34 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3B|40 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

If p=2-a , then a^(3)+6ap+p^(3)-8 =

Prove that if p=2-a, then a^(3)+6ap+p^(3)-8=0

If p-2^(a), then show that a^(4)+6ap+p^(8)=0

If a,b,c are in A.P.,prove that 8b^(3)-a^(3)-c^(3)=3ac(a+c)

If a, b, c are in A.P., prove that a^(3)+4b^(3)+c^(3)=3b(a^(2)+c^(2)).

If the zeros of the polynomial f(x)=ax^(3)+3bx^(2)+3cx+d are in A.P. prove that 2b^(3)-3abc+a^(2)d=0

If p sin^(3)alpha+qcos^(3)alpha=sinalphacosalpha and p sinalpha - q cos alpha=0, then prove that : p^(2)+q^(2)=1

If a,b,c are in A.P.,prove that: (a-c)^(2)=4(a-b)(b-c)a^(2)+c^(2)+4ac=2(ab+bc+ca)a^(3)+c^(3)+6abc=8b^(3)

If S_(m)=m^(2) p and S_(n)=n^(2)p , where m ne n in an AP then prove that S_(p) =P^(3)

If the angles A,B,C of a triangle are in A.P. and sides a,b,c, are in G.P., then prove that a^2, b^2,c^2 are in A.P.