Home
Class 9
MATHS
factorize : 4a^2-4b^2+4a+1...

factorize : `4a^2-4b^2+4a+1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorize the expression \(4a^2 - 4b^2 + 4a + 1\), we can follow these steps: ### Step 1: Rearrange the expression We can rearrange the expression to group similar terms: \[ 4a^2 + 4a - 4b^2 + 1 \] ### Step 2: Factor out common terms Notice that \(4a^2 + 4a\) can be factored: \[ 4(a^2 + a) - 4b^2 + 1 \] ### Step 3: Complete the square for \(a\) To complete the square for \(a^2 + a\), we can rewrite it as: \[ a^2 + a = \left(a + \frac{1}{2}\right)^2 - \frac{1}{4} \] Thus, we can express \(4(a^2 + a)\) as: \[ 4\left(\left(a + \frac{1}{2}\right)^2 - \frac{1}{4}\right) = 4\left(a + \frac{1}{2}\right)^2 - 1 \] ### Step 4: Substitute back into the expression Now substituting back into the expression gives: \[ 4\left(a + \frac{1}{2}\right)^2 - 1 - 4b^2 \] This can be rearranged to: \[ 4\left(a + \frac{1}{2}\right)^2 - (2b)^2 \] ### Step 5: Apply the difference of squares formula Now we can use the difference of squares formula \(A^2 - B^2 = (A + B)(A - B)\): Let \(A = 2\left(a + \frac{1}{2}\right)\) and \(B = 2b\). Thus, we have: \[ (2\left(a + \frac{1}{2}\right) + 2b)(2\left(a + \frac{1}{2}\right) - 2b) \] ### Step 6: Simplify the factors This simplifies to: \[ (2a + 1 + 2b)(2a + 1 - 2b) \] ### Final Factorized Form Thus, the factorized form of the expression \(4a^2 - 4b^2 + 4a + 1\) is: \[ (2a + 1 + 2b)(2a + 1 - 2b) \] ---

To factorize the expression \(4a^2 - 4b^2 + 4a + 1\), we can follow these steps: ### Step 1: Rearrange the expression We can rearrange the expression to group similar terms: \[ 4a^2 + 4a - 4b^2 + 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3C|66 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3D|7 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3A|34 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

factorize : (3a+5b)^2-4c^2

Factorize a^2-4

Factorize: a^(2)+4b^(2)-4ab-4c^(2)

Factorize a^4+4a^2+3 .

Which of the following is the factor of 4a^(2)+b^(2)-4ab+2b-4a+1?

The factors of (a^2+4b^2+4b-4ab-2a-8) are

Factorize: (a^(4)-8a^(2)b^(2)+16b^(4))-256a^(4)-6a^(2)b^(2)+9b^(4)-81

Solve by factorization: 4x^(2)-4a^(2)x+(a^(4)-b^(4))=0