Home
Class 9
MATHS
a^2-b^2-4ac+4c^2...

`a^2-b^2-4ac+4c^2`

Text Solution

Verified by Experts

The correct Answer is:
`(a-2c+b)(a-2c-b)`

`a^2-b^2-4ac+4c^2=(a^2-4ac+4c^2)-b^2=(a-2c)^2-b^2`
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3C|66 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3D|7 Videos
  • FACTORISATION OF POLYNOMIALS

    RS AGGARWAL|Exercise Exercise 3A|34 Videos
  • COORDINATE GEOMETRY

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|22 Videos
  • GEOMETRICAL CONSTRUCTIONS

    RS AGGARWAL|Exercise Exercise 13|2 Videos

Similar Questions

Explore conceptually related problems

Delta=|{:(1+a^2+a^4,1+ab+a^2b^2,1+ac+a^2c^2),(1+ab+a^2b^2,1+b^2+b^4,1+bc+b^2c^2),(1+ac+a^2c^2,1+bc+b^2c^2,1+c^2+c^4):}| is equal to

If A=[(-a^2, ab, ac),(ab,-b^2,bc),(ac,bc,-c^2)] then det A is equal to (A) 4abc (B) 4a^2b^2c^2 (C) -4abc (D) -4a^2b^2c^2

If the roots of the equation ax^(2)+bx+c=0 are of the form (k+1)/k and (k+2)/(k+1), then (a+b+c)^(2) is equal to 2b^(2)-ac b.a62 c.b^(2)-4ac d.b^(2)-2ac

Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]| = 4a^2b^2c^2

Let alpha and beta be the roots of the equationa x^(2)+2bx+c=0 and alpha+gamma and beta+gamma be the roots of Ax^(2)+2Bx+C=0. Then prove that A^(2)(b^(2)-4ac)=a^(2)(B^(2)-4AC)

Four steps to derive the quadratic formula are shown below . (I) x^(2)+(bx)/a=(-c)/a (II) (x+b/(2a))^(2)=(b^(2)-4ac)/(4a^(2)) (III) x =pm sqrt((b^(2)-4ac)/(4a^(2)))-b/(2a) (IV) x^(2)+(bx)/a +(b/(2a))^(2)=(-c)/a + (b/(2a))^(2) What is the correct order for these steps ?

If a+b+c=0 prove that (a^4+b^4+c^4)/(a^2b^2+b^2c^2+c^2a^2)=2

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

Show that |[b^2+c^2,ab,ac],[ba,c^2+a^2,bc],[ca,cb,a^2+b^2]|=4a^2b^2c^2