Home
Class 10
MATHS
Find the value of (cos theta)/((1-tan...

Find the value of
` (cos theta)/((1-tan theta))+(sin theta)/((1-cot theta))`

A

`cos theta + sin theta`

B

`cos theta - sin theta`

C

`1/(cos theta + sin theta)`

D

`(cos theta + sin theta)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot \theta} \] we will simplify each term step by step. ### Step 1: Rewrite \(\tan \theta\) and \(\cot \theta\) We know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \quad \text{and} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} \] ### Step 2: Substitute \(\tan \theta\) and \(\cot \theta\) Substituting these definitions into the expression gives: \[ \frac{\cos \theta}{1 - \frac{\sin \theta}{\cos \theta}} + \frac{\sin \theta}{1 - \frac{\cos \theta}{\sin \theta}} \] ### Step 3: Simplify the denominators For the first term: \[ 1 - \frac{\sin \theta}{\cos \theta} = \frac{\cos \theta - \sin \theta}{\cos \theta} \] Thus, the first term becomes: \[ \frac{\cos \theta}{\frac{\cos \theta - \sin \theta}{\cos \theta}} = \frac{\cos^2 \theta}{\cos \theta - \sin \theta} \] For the second term: \[ 1 - \frac{\cos \theta}{\sin \theta} = \frac{\sin \theta - \cos \theta}{\sin \theta} \] Thus, the second term becomes: \[ \frac{\sin \theta}{\frac{\sin \theta - \cos \theta}{\sin \theta}} = \frac{\sin^2 \theta}{\sin \theta - \cos \theta} \] ### Step 4: Combine the two terms Now we have: \[ \frac{\cos^2 \theta}{\cos \theta - \sin \theta} + \frac{\sin^2 \theta}{\sin \theta - \cos \theta} \] Notice that \(\sin \theta - \cos \theta = -(\cos \theta - \sin \theta)\). Thus, we can rewrite the second term: \[ \frac{\sin^2 \theta}{-(\cos \theta - \sin \theta)} = -\frac{\sin^2 \theta}{\cos \theta - \sin \theta} \] Combining both terms gives: \[ \frac{\cos^2 \theta - \sin^2 \theta}{\cos \theta - \sin \theta} \] ### Step 5: Factor the numerator The numerator can be factored using the identity \(a^2 - b^2 = (a - b)(a + b)\): \[ \cos^2 \theta - \sin^2 \theta = (\cos \theta - \sin \theta)(\cos \theta + \sin \theta) \] ### Step 6: Cancel common factors Now substituting back, we have: \[ \frac{(\cos \theta - \sin \theta)(\cos \theta + \sin \theta)}{\cos \theta - \sin \theta} \] Assuming \(\cos \theta \neq \sin \theta\), we can cancel \((\cos \theta - \sin \theta)\): \[ \cos \theta + \sin \theta \] ### Conclusion Thus, we have shown that: \[ \frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot \theta} = \cos \theta + \sin \theta \]

To solve the expression \[ \frac{\cos \theta}{1 - \tan \theta} + \frac{\sin \theta}{1 - \cot \theta} \] we will simplify each term step by step. ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13A|38 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13B|15 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

If sec theta=(5)/(4), find the value of (sin theta-2cos theta)/(tan theta-cot theta)

If cot theta = (7)/(8) , then the value of ((1 + sin theta)(1- sin theta))/((1 + cos theta)(1- cos theta)) = _________

If sqrt(3)sin theta=cos theta, find the value of (sin theta tan theta(1+cot theta))/(sin theta+cos theta)

Prove that : (cos theta)/(1-tan theta)+(sin theta)/(1-cot theta)=sin theta+cos theta

Find the value of (sin theta)/(cos (90^@+theta))+(sin theta)/(sin (180^@+theta))+(tan(90^@+theta))/(cot theta)

If 3cot theta=4, find the value of (4cos theta-sin theta)/(2cos theta+sin theta)

prove that (cos theta)/(1-tan theta)+(sin theta)/(1-cot theta)=cos theta+sin theta

If cot theta=(7)/(8) then find the value ((1-sin theta)(1+sin theta))/((1-cos theta)(1+cos theta))

If sec theta =(5)/(4),"find the value of "((2cos theta - sin theta ))/((cot theta - tan theta ))=.

RS AGGARWAL-TRIGONOMETRIC IDENTITIES-Test Yourself
  1. Find the value of (cos theta)/((1-tan theta))+(sin theta)/((1-cot t...

    Text Solution

    |

  2. (cos^(2)56^(@)+cos^(2)34^(@))/(sin^(@)56^(@)+sin^(2)34^(@))+3tan^(2)56...

    Text Solution

    |

  3. (sin^2 30^@ cos^2 45^@+4 tan^2 30^@+1/2 sin^2 90^@+1/8 cot^2 60^@)=?

    Text Solution

    |

  4. If cosA+cos^(2)A=1, then sin^(2)A+sin^(4)A=?.

    Text Solution

    |

  5. If sin theta=(sqrt(3))/(2)" then " ("cosec"theta+cot theta)=?

    Text Solution

    |

  6. If cotA=(4)/(5), then ((sinA+cosA))/((sinA-cosA))=?

    Text Solution

    |

  7. If 2x=secA and (2)/(x)=tanA, " prove that " (x^(2)-(1)/(x^(2)))=(1)/(4...

    Text Solution

    |

  8. If sqrt(3) tantheta=3sintheta, " prove that " (sin^(2)theta-cos^(2)the...

    Text Solution

    |

  9. Prove that ((sin^(2)73^(@)+sin^(2)17^(@)))/((cos^(2)28^(@)+cos^(2)62^(...

    Text Solution

    |

  10. If 2sin2 theta=sqrt(3) ,then the value of theta is :

    Text Solution

    |

  11. Prove that sqrt((1+cosA)/(1-cosA))=("cosec"A+cotA).

    Text Solution

    |

  12. If cosec theta + cot theta= p, cos theta = ?

    Text Solution

    |

  13. Prove that ("cosec"A-cotA)^(2)=((1-cosA))/((1+cosA)).

    Text Solution

    |

  14. If 5cottheta=3. find the value of (5sintheta-3costheta)/(4sintheta+3co...

    Text Solution

    |

  15. Prove that (sin32^(@)cos58^(@)+cos32^(@)sin58^(@))=1.

    Text Solution

    |

  16. If x=a sin theta+b cos theta and y=a cos theta -b sin theta, " prove t...

    Text Solution

    |

  17. ((1+sintheta))/((1-sintheta))=?

    Text Solution

    |

  18. Prove that (1)/((sec theta - tan theta))-(1)/(cos theta)=(1)/(cos th...

    Text Solution

    |

  19. ((sinA-2sin^(3)A))/((2cos^(3)A-cosA)) = ?

    Text Solution

    |

  20. Prove that (tanA)/((1-cotA))+(cotA)/((1-tanA))=(1+tanA+cotA).

    Text Solution

    |

  21. If sec5A="cosec"(A-36^(@)) and 5A " is an acute angle, show that " A=2...

    Text Solution

    |