Home
Class 10
MATHS
Find (tan A)/((1-cot A))+(cot A)/((1-...

Find
`(tan A)/((1-cot A))+(cot A)/((1-tan A)) `

A

`(1 + sin A cos A)/(sin A cos A)`

B

`(1+ tan A+cot A)`

C

both `(a)` and `(b)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression: \[ \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} \] ### Step 1: Rewrite \(\tan A\) and \(\cot A\) in terms of \(\sin A\) and \(\cos A\) Recall that: \[ \tan A = \frac{\sin A}{\cos A} \quad \text{and} \quad \cot A = \frac{\cos A}{\sin A} \] Substituting these into the expression gives: \[ \frac{\frac{\sin A}{\cos A}}{1 - \frac{\cos A}{\sin A}} + \frac{\frac{\cos A}{\sin A}}{1 - \frac{\sin A}{\cos A}} \] ### Step 2: Simplify the denominators For the first term: \[ 1 - \frac{\cos A}{\sin A} = \frac{\sin A - \cos A}{\sin A} \] Thus, the first term becomes: \[ \frac{\frac{\sin A}{\cos A}}{\frac{\sin A - \cos A}{\sin A}} = \frac{\sin^2 A}{\cos A (\sin A - \cos A)} \] For the second term: \[ 1 - \frac{\sin A}{\cos A} = \frac{\cos A - \sin A}{\cos A} \] Thus, the second term becomes: \[ \frac{\frac{\cos A}{\sin A}}{\frac{\cos A - \sin A}{\cos A}} = \frac{\cos^2 A}{\sin A (\cos A - \sin A)} \] ### Step 3: Combine the two fractions Now we can combine the two fractions: \[ \frac{\sin^2 A}{\cos A (\sin A - \cos A)} + \frac{\cos^2 A}{\sin A (\cos A - \sin A)} \] Notice that \((\cos A - \sin A) = -(\sin A - \cos A)\), so we can rewrite the second term: \[ \frac{\sin^2 A}{\cos A (\sin A - \cos A)} - \frac{\cos^2 A}{\sin A (\sin A - \cos A)} \] Now we have a common denominator: \[ \frac{\sin^2 A \sin A - \cos^2 A \cos A}{\sin A \cos A (\sin A - \cos A)} \] ### Step 4: Factor the numerator The numerator can be factored: \[ \sin^3 A - \cos^3 A = (\sin A - \cos A)(\sin^2 A + \sin A \cos A + \cos^2 A) \] Using the Pythagorean identity \(\sin^2 A + \cos^2 A = 1\), we can simplify: \[ \sin^2 A + \sin A \cos A + \cos^2 A = 1 + \sin A \cos A \] ### Step 5: Final expression Thus, the entire expression becomes: \[ \frac{(\sin A - \cos A)(1 + \sin A \cos A)}{\sin A \cos A (\sin A - \cos A)} \] The \((\sin A - \cos A)\) terms cancel out: \[ \frac{1 + \sin A \cos A}{\sin A \cos A} \] ### Step 6: Separate the terms This can be separated into: \[ \frac{1}{\sin A \cos A} + 1 \] ### Step 7: Recognize the final result The term \(\frac{1}{\sin A \cos A}\) can be rewritten using the identity for \(\tan A\) and \(\cot A\): \[ \frac{1}{\sin A \cos A} = \tan A + \cot A \] Thus, we have: \[ 1 + \tan A + \cot A \] ### Conclusion The left-hand side simplifies to the right-hand side, proving that: \[ \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} = 1 + \tan A + \cot A \]

To solve the problem, we need to simplify the expression: \[ \frac{\tan A}{1 - \cot A} + \frac{\cot A}{1 - \tan A} \] ### Step 1: Rewrite \(\tan A\) and \(\cot A\) in terms of \(\sin A\) and \(\cos A\) ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13A|38 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13B|15 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

Prove that (tan A) / (1-cot A) + (cot A) / (1-tan A) = sec A cos ecA + 1

Prove the following identities: (tan A)/(1-cot A)+(cot A)/(1-tan A)=1+tan A+cot A=1+sec A cos ecA

(tan A) / (1-cot A) + (cot A) / (1-tan A) = 1 + tan A + cot A = 1 + sec A cos ecA

(tan A) / (1-cot A) + (cot A) / (1-tan A) = 1 + tan A + cot A = 1 + sec A cos ecA (1 + cos theta + sin theta) / (1 + cos theta-sin theta) = (1 + sin theta) / (cos theta)

(cot A-1)/(2-sec^(2)A)=(cot A)/(1+tan A)

Prove that (tan phi)/(1-cot phi)+(cot phi)/(1-tan phi)=1+tan phi+cot phi

(tan x)/(1-cot x)-(cot x)/(1-tan x)=(sec x cos(x+1))

Prove that (tan theta)/(1-cot theta)+(cot theta)/(1-tan theta)=1+sec theta+tan theta

RS AGGARWAL-TRIGONOMETRIC IDENTITIES-Test Yourself
  1. Find (tan A)/((1-cot A))+(cot A)/((1-tan A))

    Text Solution

    |

  2. (cos^(2)56^(@)+cos^(2)34^(@))/(sin^(@)56^(@)+sin^(2)34^(@))+3tan^(2)56...

    Text Solution

    |

  3. (sin^2 30^@ cos^2 45^@+4 tan^2 30^@+1/2 sin^2 90^@+1/8 cot^2 60^@)=?

    Text Solution

    |

  4. If cosA+cos^(2)A=1, then sin^(2)A+sin^(4)A=?.

    Text Solution

    |

  5. If sin theta=(sqrt(3))/(2)" then " ("cosec"theta+cot theta)=?

    Text Solution

    |

  6. If cotA=(4)/(5), then ((sinA+cosA))/((sinA-cosA))=?

    Text Solution

    |

  7. If 2x=secA and (2)/(x)=tanA, " prove that " (x^(2)-(1)/(x^(2)))=(1)/(4...

    Text Solution

    |

  8. If sqrt(3) tantheta=3sintheta, " prove that " (sin^(2)theta-cos^(2)the...

    Text Solution

    |

  9. Prove that ((sin^(2)73^(@)+sin^(2)17^(@)))/((cos^(2)28^(@)+cos^(2)62^(...

    Text Solution

    |

  10. If 2sin2 theta=sqrt(3) ,then the value of theta is :

    Text Solution

    |

  11. Prove that sqrt((1+cosA)/(1-cosA))=("cosec"A+cotA).

    Text Solution

    |

  12. If cosec theta + cot theta= p, cos theta = ?

    Text Solution

    |

  13. Prove that ("cosec"A-cotA)^(2)=((1-cosA))/((1+cosA)).

    Text Solution

    |

  14. If 5cottheta=3. find the value of (5sintheta-3costheta)/(4sintheta+3co...

    Text Solution

    |

  15. Prove that (sin32^(@)cos58^(@)+cos32^(@)sin58^(@))=1.

    Text Solution

    |

  16. If x=a sin theta+b cos theta and y=a cos theta -b sin theta, " prove t...

    Text Solution

    |

  17. ((1+sintheta))/((1-sintheta))=?

    Text Solution

    |

  18. Prove that (1)/((sec theta - tan theta))-(1)/(cos theta)=(1)/(cos th...

    Text Solution

    |

  19. ((sinA-2sin^(3)A))/((2cos^(3)A-cosA)) = ?

    Text Solution

    |

  20. Prove that (tanA)/((1-cotA))+(cotA)/((1-tanA))=(1+tanA+cotA).

    Text Solution

    |

  21. If sec5A="cosec"(A-36^(@)) and 5A " is an acute angle, show that " A=2...

    Text Solution

    |