Home
Class 10
MATHS
If x=acos^(3)theta and y = bsin^(3)theta...

If `x=acos^(3)theta and y = bsin^(3)theta`, prove that `((x)/(a))^(2//3)+((y)/(b))^(2//3)=1.`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13C|40 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|53 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13A|38 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

If x=a cos^(3)theta,y=b sin^(3)theta, then

If x = a cos ^(3) theta and y = b sin ^(3) theta , then the value of ((x)/(a))^(2//3) + ((y)/(b))^(2//3)

If alpha,beta are the intercepts made on the axes by the tangent at any point of the curve x=a cos^(3)theta and y=b sin^(3)theta, prove that (alpha^(2))/(a^(2))+(beta^(2))/(b^(2))=1

If x=acos^(3)theta,y=bsin^(3)theta then ((x)/(a))^((2)/(3))+((y)/(b))^((2)/(3))=?

Find the blanks. (i) If x=a cos^(3)theta,y=b sin^(3)theta then ((x)/(a))^(2/3)+((y)/(b))^(2/3)=ul(P) (ii) if x=a sec theta cos phi,y=b sec theta sin phi and z=c tan theta then (x^(2))/(a^(2))+(y^(2))/(b^(2))-(z^(2))/(c^(2))=ul(Q) (iii) If cos A+cos^(2)A=1 ,then sin^(2)A+sin^(4)A=ul(R)

x=a cos^(3)theta,y=b sin^(3)theta : ((x)/(a))^(2/3)+((y)/(b))^(2/3)=1

If x=a^(2) cos3 theta and y=b^(2)sin3 theta , then

If x=cos theta,y sin^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3sin^(2)theta(5cos^(2)theta-1)

If x=cos theta,y=s in^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3s in^(2)theta(5cos^(2)theta-1)