Home
Class 10
MATHS
If cosec theta - sin theta = a^3 and sec...

If `cosec theta - sin theta = a^3 and sec theta - cos theta = b^3` then prove that `a^2b^2(a^2+b^2) = 1.`

Text Solution

Verified by Experts

`a^(3)=((1)/(sin theta)-sin theta)=((1-sin^(2)theta)/(sintheta))=(cos^(2)theta)/(sintheta) rArr a=(cos^(2//3)theta)/(sin^(1//3)theta).`
`b^(3)=((1)/(cos theta)-cos theta)=((1-cos^(2)theta)/(costheta))=(sin^(2)theta)/(costheta) rArr b=(sin^(2//3)theta)/(cos^(1//3)theta).`
`therefore a^(2)b^(2)(a^(2)+b^(2))=a^(4)b^(2)+a^(2)b^(4)=a^(3)(ab^(2))+(a^(2)b)b^(3)`
`=(cos^(2)theta)/(sintheta)*[(cos^(2//3)theta)/(sin^(1//3)theta)*(sin^(4//3)theta)/(cos^(2//3)theta)]+[(cos^(4//3)theta)/(sin^(2//3)theta)*(sin^(2//3)theta)/(cos^(1//3)theta)]*(sin^(2)theta)/(costheta)`
`=(cos^(2)theta)/(sintheta)*sin theta+cos theta*(sin^(2)theta)/(cos theta)=(cos^(2)theta+sin^(2)theta)=1.`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13C|40 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|53 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13A|38 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

If cos ec theta-sin theta=a^(3) and sec theta-cos theta=b^(3) then prove that a^(2)b^(2)(a^(2)+b^(2))=1

If cos ec theta-sin theta=a^(3),sec theta-cos theta=b^(3) then prove that a^(2)b^(2)(a^(2)+b^(2))=1

If cos ec theta-sin theta=a^(3),sec theta-cos theta=b^(3) then prove that a^(2)b^(2)(a^(2)+b^(2))=1

If csc theta-sin theta=a^(3),sec theta-cos theta=b^(3) Prove that :a^(2)b^(2)(a^(2)+b^(2))=1

If x=cosec theta-sin theta and y=sec theta-cos theta then prove that x^(2/3)+y^(2/3)=(xy)^(-2/3)

If x=a cos theta-b sin theta and y=a sin theta+b cos theta then prove that :x^(2)+y^(2)=a^(2)+b^(2)

If a cos theta+b sin theta=m and a sin theta-b cos theta=n, prove that a^(2)+b^(2)=m^(2)+n^(2)

If sin theta + cos theta = m and sec theta + "cosec" theta = n, prove that n(m^(2)-1) = 2m.