Home
Class 10
MATHS
If m=cos theta-sin theta and n=costheta+...

If `m=cos theta-sin theta` and `n=costheta+sin theta` then show that `sqrt(m/n)+sqrt(n/m)=2/sqrt(1-tan^2 theta)`

Text Solution

Verified by Experts

`LHS=((m+n))/(sqrt(mn)).`
Now, `(m+n)=2costheta and nm=(cos^(2)theta-sin^(2)theta)=cos^(2)theta(1-tan^(2)theta).`
` therefore sqrt(mn)=costheta sqrt(1-tan^(2)theta).`
Hence, `LHS =((m+n))/(sqrt(mn))=(2 costheta)/(costheta sqrt(1-tan^(2)theta))=(2)/(sqrt(1-tan^(2)theta))=RHS.`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13C|40 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Multiple Choice Questions (Mcq)|53 Videos
  • TRIGONOMETRIC IDENTITIES

    RS AGGARWAL|Exercise Exercise 13A|38 Videos
  • TRIANGLES

    RS AGGARWAL|Exercise Test Yourself|20 Videos
  • TRIGONOMETRIC RATIOS

    RS AGGARWAL|Exercise Exercise 10|35 Videos

Similar Questions

Explore conceptually related problems

cos m theta-sin n theta=0

If tan theta+sin theta=m and tan theta-sin theta=n

If cos theta+sin theta=sqrt(2), then cos theta-sin theta=

If tan theta+sin theta=m and tan theta-sin theta=n show that m^(2)-n^(2)=4sqrt(nm)

cos m theta=sin n theta then theta=

If cos theta-sin theta=m and cos theta+sin theta=n then prove that (m^2-n^2)/(m^2+n^2)=-2sin theta cos theta

If tan theta+sin theta=m and tan theta-sin theta=n show m^(2-)n^(2)=4sqrt(mn)

If : cos theta-sintheta=sqrt2.sin theta, "then": costheta+sintheta=

If tan theta+sin theta=m and tan theta-sin theta=n then prove m^(2)-n^(2)=4sqrt(mn)