Home
Class 12
MATHS
Evaluate : (i) int((x-1))/(sqrt(x+4))dx ...

Evaluate : (i) `int((x-1))/(sqrt(x+4))dx` (ii) `intxsqrt(x+2)dx`
(iii) `f(4x-2)sqrt(x^(2)+x++1)dx` (iv) `int((4x+3))/(sqrt(2x^(2)+3x+1))dx`

Text Solution

Verified by Experts

(i) Put `(x+4)=t^(2)` so that `x=(t^(2)-4)anddx=2tdt`.
`:.int((x-1))/(sqrt(x+4))dx=2int((t^(2)-5))/(t)dt`
`=2intt^(2)dt-10intdt=(2t^(3))/(3)-10t+C`
`=(2)/(3)(x+4)^(3//2)-10(x+4)^(1//2)+C`.
(ii) Put `(x+2)=t^(2)` so that `x=(t^(2)-2)anddx=2tdt`.
`:.intxsqrt(x+2)dx=int(t^(2)-2)2dt=2intt^(4)dt-4f^(2)dt`
`=(2t^(5))/(5)-(4t^(3))/(3)+C=(2(x+2)^(5//2))/(5)-(4(x+2)^(3//2))/(3)+C`.
(iii) Put `(x^(2)+x+1)=t` so that (2x+1)dx=dt.
`:.int(4x+2)(sqrt(x^(2)+x+1))dx=2intsqrt(t)dt`
`=(4)/(3)t^(3//2)+C=(4)/(3)(x^(2)+x+1)^(3//2)+C`.
(iv) Put `(2x^(2)+3x+1)=t` so that (4x+3)dx=dt.
`:.int((4x+3))/(sqrt(2x^(2)+3x+1))dx=int(dt)/(sqrt(t))=2sqrt(t)+C=2sqrt(2x^(2)+3x+1)+C`.
Promotional Banner

Topper's Solved these Questions

  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A VERY SHORT ANSWER QUESTIONS|10 Videos
  • METHODS OF INTEGRATION

    RS AGGARWAL|Exercise EXERCISE 13A SHORT ANSWER QUESTIONS|92 Videos
  • MATRICES

    RS AGGARWAL|Exercise Exercise 5F|21 Videos
  • PROBABILITY

    RS AGGARWAL|Exercise Exercise 29 B|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: (i) int(x-1)/(sqrt(x+4))dx (ii) int(x+2)sqrt(3x+5)dx

Evaluate : (i) int(dx)/(1+sqrt(x)) (ii) int(x+sqrt(x+1))/(x+2)dx

Evaluate: ( i )(x+1)/(sqrt(2x+3))dx (ii) int x sqrt(x+2)dx

Evaluate: (i) int(4x+2)sqrt(x^(2)+x+1)dx (ii) int(4x+3)/(sqrt(2x^(2)+3x+1))dx

Evaluate: int(2x+1)/(sqrt(x^2+4x+3))\ dx

Evaluate: int(1)/((x-1)sqrt(x^(2)+4))dx

Evaluate: (i) int4x^(3)sqrt(5-x^(2))dx (ii) int(1)/(sqrt(x)+x)dx

Evaluate: int(x)/(sqrt(x+4))dx( ii) int(2-3x)/(sqrt(1+3x))dx

Evaluate: (i) int sqrt(4x^(2)+9)dx (ii) int sqrt(x^(2)+2x+5)dx

Evaluate: int(4x+3)/(sqrt(2x^(2)+3x+1))dx